MTH436-HOMEWORK 9

The solutions to problems in Section B should be submitted at the start of class on 04/24/19.

A. Warm-up Questions

Question A.1. For the following sequences f_{n}, find $\lim _{n \rightarrow \infty} f_{n}$ and decide if this convergence is uniform.
(i) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f_{n}(x)=\frac{1}{n^{2}+x^{2}}$.
(ii) $f:[0, \infty) \rightarrow \mathbb{R}$ given by $f_{n}(x)=\frac{x^{n}-1}{x^{n}+1}$.
(iii) $f_{n}:[-1,1] \rightarrow \mathbb{R}$ given by $f_{n}(x)=\sqrt{x^{2}+\frac{1}{n^{2}}}$.
(iv) $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ given by $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}$.
(v) $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ given by $f_{n}(x)=e^{-n x}$.
(vi) $f_{n}:[0, \infty) \rightarrow \mathbb{R}$ given by $f_{n}(x)=\frac{n x}{1+n x}$.

Question A.2. Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ given by $f_{n}(x)=\frac{\cos (n x)}{n}$.
(i) Let $f(x)=0$ for all $x \in[0,1]$. Prove that $f_{n} \rightrightarrows f$ on $[0,1]$.
(ii) Compute f_{n}^{\prime}. Does $f_{n}^{\prime} \rightarrow g$ for some function g ?

Question A.3. Suppose $f_{n}: A \rightarrow \mathbb{R}$ is bounded for each $n \in \mathbb{N}$ (so that for each n there exists $M_{n} \in \mathbb{R}$ such that $\left|f_{n}(x)\right| \leq M_{n}$ for all $\left.x \in A\right)$. Show that if $f_{n} \rightrightarrows f$ then f is bounded.
Question A.4. Let x_{1}, x_{2}, \ldots be an enumeration of the rationals in $[0,1]$. Define $f_{n}:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}1 & \text { if } x=x_{i} \text { for } 1 \leq i \leq n \\ 0 & \text { otherwise }\end{cases}
$$

Find f such that $f_{n} \rightarrow f$ and discuss the integrals of f_{n} and f, and points of continuity of f_{n} and f.
Question A.5. Suppose $f_{n}: A \rightarrow \mathbb{R}$ are continuous and $f_{n} \rightrightarrows f$ and that $x_{n} \rightarrow x$ in A. Prove that $\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right) \rightarrow f(x)$.

B. Submitted Questions

Question B.1. Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f_{n}(x)=\frac{x}{1+n x^{2}}$.
(i) Find $f=\lim _{n \rightarrow \infty} f_{n}$.
(ii) Show $f_{n} \rightrightarrows f$.
(iii) Compute $f_{n}^{\prime}(x)$. Is it true that $f_{n}^{\prime} \rightarrow f^{\prime}$?

Question B.2. Suppose $f_{n}, g_{n}: A \rightarrow \mathbb{R}$ such that $f_{n} \rightrightarrows f$ and $g_{n} \rightrightarrows g$.
(i) Prove that $\left(f_{n}+g_{n}\right) \rightrightarrows f+g$.
(ii) Prove that if f_{n} and g_{n} are bounded for each $n \in \mathbb{N}$ then $f_{n} g_{n} \rightrightarrows f g$.
(iii) Give an example where $f_{n} \rightrightarrows f$ and $g_{n} \rightrightarrows g$ but $\left(f_{n} g_{n}\right)$ does not converge uniformly.

C. Challenge Questions

Question C.1. For $x \in \mathbb{R}$, define the floor of x to be

$$
\lfloor x\rfloor=\sup \{n \in \mathbb{Z} \mid n \leq x\}
$$

and the fractional part of x to be $\{x\}=x-\lfloor x\rfloor$. Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)=\sum_{n=1}^{\infty} \frac{\{n x\}}{n^{2}} .
$$

(i) Find D, the set of discontinuities of f.
(ii) Show that D is countable.
(iii) Show that D is dense in \mathbb{R}.
(iv) Show that $f \in \mathcal{D}[a, b]$ for all $-\infty<a<b<\infty$.

Question C.2. Define $s_{d}:[0,1) \rightarrow[0,1)$ by $s_{d}(x)=\{d x\}$. For $n \in \mathbb{N}$, let $s_{d}^{\circ n}=s_{d} \circ s_{d} \circ \ldots \circ s_{d}$ be the n-fold composition of s_{d}.
(i) Show that if $x \in \mathbb{Q}$ then $f^{\circ n}(x)$ is eventually constant.
(ii) Show that if $x \in R-\mathbb{Q}$ then $\left\{f^{\circ n}(x) \mid n \in \mathbb{N}\right\}$ is dense in $[0,1)$.

