MTH436 - HOMEWORK 4

Solutions to the questions in Section B should be submitted by the start of class on 3/6/19.

A. Warm-up Questions

Question A.1. Find at which points the following functions are differentiable. and compute the derivatives (if they exist).
(i) $f(x)=x^{2}+1$ if x is rational and $f(x)=2 x$ if x is irrational.
(ii) $f(x)=x|x|$
(iii) $f(x)=\frac{\sin \left(x^{2}\right)}{x}$ for $x \neq 0$ and $f(0)=0$.
(iv) $f(x)=x^{2} \sin \left(\frac{1}{x^{2}}\right)$ for $x \neq 0$ and $f(0)=0$. Prove also that f^{\prime} is unbounded on the closed interval $[-1,1]$ and so is not continuous.

Question A.2. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ and $|f(x)-f(y)| \leq(x-y)^{2}$ for all $x, y \in \mathbb{R}$. Prove that f is constant.

Question A.3. Let I be an interval and $f: I \rightarrow \mathbb{R}$. Show that if f is differentiable and $f^{\prime}(x)>0$ for all $x \in I$ then f is strictly increasing on I.

Question A.4. Suppose $f:[0,1] \rightarrow \mathbb{R}$ is uniformly continuous. Is it true that f^{\prime} is bounded? Prove it or find a counterexample.

Question A.5. Prove that the derivative of an even function is an odd function, and vice versa.
Question A.6. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be differentiable and suppose that $\lim _{x \rightarrow \infty} f^{\prime}(x)=M$. Find $\lim _{x \rightarrow \infty}(f(x+1)-f(x))$.

Question A.7. Examples from class.
(i) Let $f(x)=x+2 x^{2} \sin \left(\frac{1}{x}\right)$ for $x \neq 0$ and $f(0)=0$. Show that $f^{\prime}(0)=1$ but f is not increasing in any neighbourhood of 0 .
(ii) Let $f(x)=2 x^{4}+x^{4} \cos \left(\frac{1}{x}\right)$ for $x \neq 0$ and $f(0)=0$. Show that 0 is a global minimum for f but for every neighbourhood V of 0 there exists $x, y \in V$ such that $f^{\prime}(x)>0$ and $f^{\prime}(y)<0$.

B. Submitted Questions

Question B.1. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b). Let c be an interior point of I and suppose $\lim _{x \rightarrow c} f^{\prime}(x)=L$. Prove that $f^{\prime}(c)=L$.

Question B.2. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be differentiable. Prove or disprove the following.
(i) If $\lim _{x \rightarrow \infty} f(x)=L$ then $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$.
(ii) If $\lim _{x \rightarrow \infty} f(x)=L$ and $\lim _{x \rightarrow \infty} f^{\prime}(x)=M$ then $M=0$.

C. Challenge Questions

Question C.1. Let $f:[0,2] \rightarrow \mathbb{R}$ be continuous on $[0,2]$ and differentiable on (0,2). Suppose further that $f(0)=0, f(1)=1$ and $f(2)=1$. Show there exists $c \in(0,2)$ such that $f^{\prime}(c)=\frac{1}{\pi}$.
Question C.2. Let $C^{1}[0,1]$ be the set of functions on $[0,1]$ for which f^{\prime} is continuous. Show that

$$
d(f, g)=\sup \{|f(x)-g(x)| \mid x \in[0,1]\}+\sup \left\{\left|f^{\prime}(x)-g^{\prime}(x)\right| \mid x \in[0,1]\right\}
$$

defines a metric on $C^{1}[0,1]$.
Question C.3. Path-connectedness Let X be a metric space. A path in X is a continuous map $\gamma:[0,1] \rightarrow X$ (where $[0,1]$ has the standard metric). We say a metric space is path-connected if for any $x, y \in X$, there exists a path γ in X such that $\gamma(0)=x$ and $\gamma(1)=y$.
(i) Prove that if γ_{1} is a path from a to b and γ_{2} is a path from b to c then γ defined as

$$
\gamma(x)= \begin{cases}\gamma_{1}(2 x) & x \in\left[0, \frac{1}{2}\right] \\ \gamma_{2}(2 x-1) & x \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

is a path from a to c.
(ii) Prove that a path is a compact subset of X.
(iii) Prove that if X is a path-connected metric space containing more than one point, then it is uncountable.
(iv) Prove that if X is path-connected, then it is connected.

