MTH436 - HOMEWORK 4

Solutions to the questions in Section B should be submitted by the start of class on 3/6/19.

A. WARM-UP QUESTIONS

Question A.1. Find at which points the following functions are differentiable. and compute the derivatives (if they exist).

- (i) $f(x) = x^2 + 1$ if x is rational and f(x) = 2x if x is irrational.
- (ii) f(x) = x|x|
- (iii) $f(x) = \frac{\sin(x^2)}{x}$ for $x \neq 0$ and f(0) = 0.
- (iv) $f(x) = x^2 \sin\left(\frac{1}{x^2}\right)$ for $x \neq 0$ and f(0) = 0. Prove also that f' is unbounded on the closed interval [-1, 1] and so is not continuous.

Question A.2. Suppose $f: \mathbb{R} \to \mathbb{R}$ and $|f(x) - f(y)| \le (x - y)^2$ for all $x, y \in \mathbb{R}$. Prove that f is constant.

Question A.3. Let I be an interval and $f: I \to \mathbb{R}$. Show that if f is differentiable and f'(x) > 0 for all $x \in I$ then f is strictly increasing on I.

Question A.4. Suppose $f: [0,1] \to \mathbb{R}$ is uniformly continuous. Is it true that f' is bounded? Prove it or find a counterexample.

Question A.5. Prove that the derivative of an even function is an odd function, and vice versa.

Question A.6. Let $f: [0, \infty) \to \mathbb{R}$ be differentiable and suppose that $\lim_{x\to\infty} f'(x) = M$. Find $\lim_{x\to\infty} (f(x+1) - f(x))$.

Question A.7. Examples from class.

- (i) Let $f(x) = x + 2x^2 \sin\left(\frac{1}{x}\right)$ for $x \neq 0$ and f(0) = 0. Show that f'(0) = 1 but f is not increasing in any neighbourhood of 0.
- (ii) Let $f(x) = 2x^4 + x^4 \cos\left(\frac{1}{x}\right)$ for $x \neq 0$ and f(0) = 0. Show that 0 is a global minimum for f but for every neighbourhood V of 0 there exists $x, y \in V$ such that f'(x) > 0 and f'(y) < 0.

B. SUBMITTED QUESTIONS

Question B.1. Suppose $f: [a, b] \to \mathbb{R}$ is continuous on [a, b] and differentiable on (a, b). Let c be an interior point of I and suppose $\lim_{x\to c} f'(x) = L$. Prove that f'(c) = L.

Question B.2. Let $f: [0, \infty) \to \mathbb{R}$ be differentiable. Prove or disprove the following.

- (i) If $\lim_{x\to\infty} f(x) = L$ then $\lim_{x\to\infty} f'(x) = 0$.
- (ii) If $\lim_{x\to\infty} f(x) = L$ and $\lim_{x\to\infty} f'(x) = M$ then M = 0.

C. CHALLENGE QUESTIONS

Question C.1. Let $f: [0,2] \to \mathbb{R}$ be continuous on [0,2] and differentiable on (0,2). Suppose further that f(0) = 0, f(1) = 1 and f(2) = 1. Show there exists $c \in (0,2)$ such that $f'(c) = \frac{1}{\pi}$.

Question C.2. Let $C^{1}[0,1]$ be the set of functions on [0,1] for which f' is continuous. Show that

$$d(f,g) = \sup\{|f(x) - g(x)| \mid x \in [0,1]\} + \sup\{|f'(x) - g'(x)| \mid x \in [0,1]\}$$

defines a metric on $C^{1}[0,1]$.

Question C.3. Path-connectedness Let X be a metric space. A path in X is a continuous map $\gamma: [0,1] \to X$ (where [0,1] has the standard metric). We say a metric space is path-connected if for any $x, y \in X$, there exists a path γ in X such that $\gamma(0) = x$ and $\gamma(1) = y$.

MTH436 - HOMEWORK 4

(i) Prove that if γ_1 is a path from a to b and γ_2 is a path from b to c then γ defined as

$$\gamma(x) = \begin{cases} \gamma_1(2x) & x \in [0, \frac{1}{2}], \\ \gamma_2(2x - 1) & x \in [\frac{1}{2}, 1]. \end{cases}$$

is a path from a to c.

- (ii) Prove that a path is a compact subset of X.
- (iii) Prove that if X is a path-connected metric space containing more than one point, then it is uncountable.
- (iv) Prove that if X is path-connected, then it is connected.