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Solutions to the questions in Section B should be submitted by the start of class on 2/20/19.

A. Warm-up Questions

Question A.1. Prove that a subset of a metric space equipped with the discrete metric is compact
if and only if it is finite.

Question A.2.

(i) Let f : (X, d1)→ (Y, d2) be a continuous map between metric spaces. Prove that if K ⊆ X
is compact then f(K) is compact. (This is an important result)

(ii) Prove that if f : (X, d)→ R is continuous and X is compact then f(X) is bounded and f
attains its bounds.

(iii) Formulate a definition for a function f : X → Y between metric spaces to be uniformly
continuous. Now show that if f : (X, d) → R is continuous and X is compact then f is
uniformly continuous.

Question A.3. Prove that if K1 and K2 are compact subsets of a metric space X then K1 ∩K2

is compact.

Question A.4. British Rail Metric. Recall d2((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2 is the
usual Euclidean norm in R2. Define a function d : R2 → R as follows. For (x1, y1) and (x2, y2) in
R2, we define

d((x1, y1), (x2, y2)) =

{
d2((x1, y1), (x2, y2)) if (x2, y2) = (kx1, ky1) for some k ∈ R,
d2((x1, y1), (0, 0)) + d2((x2, y2), (0, 0)) otherwise.

(i) Prove that d is a metric on R2.1 Hint : Essentially, if two points lie on the same line through
the origin then the distance between them is the usual Euclidean distance. Otherwise, the
distance between them is the sum of their distances from the origin. The origin acts as
the “hub” through which all journeys must travel.

(ii) Sketch V 1
2
((0, 0)), V 1

2
((1, 0)) and V1((3/4, 0)).

(iii) Does the sequence xn = (1/n, 1/n) converge? Does the sequence yn = (1/n, 1) converge?
(iv) Show that the closed unit disk D = {(x, y) ∈ R2 | d((x, y), (0, 0)) ≤ 1} is closed and

bounded in this metric.

Question A.5. (You may want to use the result of the challenge questions). Prove that if a metric
space is compact then it is complete. Is the converse true?

B. Submitted Questions

Question B.1. Let d be the British Rail metric. Consider the closed unit disk D = {(x, y) ∈ R2 |
d((x, y), (0, 0)) ≤ 1}. Is D compact? Prove your answer.

Question B.2. Let K1 and K2 be compact subsets of a metric space X. Prove that K1 ∪K2 is
compact.

C. Challenge Questions

Sequential compactness. Let (X, d) be a metric space. We say K ⊆ X is sequentially compact if
every sequence in K has a subsequence which converges to a point of K. We will prove that in a
metric space, compactness is equivalent to sequential compactness.

Question C.1. Let K be compact in (X, d) and (xn) a sequence in K

(i) Prove that if S = {xn | n ∈ N} is finite, then (xn) has a convergent subsequence.

1Called the British Rail metric. Though the fact that it is possible to get from any point to any other in finite

time means it is far more efficient than British rail.
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(ii) Assume S = {xn | n ∈ N} is infinite and assume that S contains no subsequence which
converges to a point of K. Prove that for each x ∈ K, there exists ε(x) > 0 such that
Vε(x)(x) ∩ S ⊆ {x}.

(iii) By considering the open cover U = {Vε(x)(x) | x ∈ K}, obtain a contradiction.

Conclude that compactness implies sequential compactness.

Question C.2. Let K be a sequentially compact subset of (X, d). For ε > 0, define an ε-net of K
to be a set S ⊆ K such that K ⊆

⋃
s∈S Vε(s). If U is an open cover of K, we say that ε > 0 is a

Lebesgue number for K if for any x ∈ K, there exists U ∈ U such that Vε(x) ⊆ U .

(i) Prove that if ε > 0 and K is sequentially compact, then K has a finite ε-net (argue by
contradiction).

(ii) Prove that any open cover of a sequentially compact set has a Lebesgue number (again,
argue by contradicton).

(iii) Prove that K is compact. Use the fact that any open cover of K has a Lebesgue number ε,
and for this ε > 0 it has a corresponding ε-net. Combine these ideas to construct a finite
subcover of any open cover of K.

Conclude that sequential compactness implies compactness.


