MTH436 - HOMEWORK 2

Solutions to the questions in Section B should be submitted by the start of class on 2/13/19.

A. WARM-UP QUESTIONS

Question A.1. Suppose I is an interval and $f: I \to \mathbb{R}$ is increasing. For $c \in I$, prove the following.

- (i) $j_f(c) \ge 0$.
- (ii) f is continuous at c if and only if $j_f(c) = 0$.

Question A.2. Let $f: [0,1] \to \mathbb{R}$.

- (i) Suppose that f takes each value exactly twice. Show that f is not a continuous function.
- (ii) Suppose f(0) < f(1) and for each $y \in \mathbb{R}$, the set $f^{-1}(y)$ consists of at most one element. Prove that f is strictly increasing.

Question A.3.

- (i) Let (X, d_X) be a metric space and $f, g: X \to \mathbb{R}$ be continuous.
 - (a) Prove that f + g is continuous.
 - (b) Prove that fg is continuous.
- (ii) Let (X, d_X) , (Y, d_Y) and (Z, d_Z) be metric spaces and suppose $f: X \to Y$ and $g: Y \to Z$ be continuous. Prove that $g \circ f$ is continuous.

Question A.4. Find all continuous functions $f: (\mathbb{R}, |\cdot|) \to (\mathbb{R}, \delta)$ where δ is the discrete metric. Then find all continuous functions $f: (\mathbb{R}, \delta) \to (\mathbb{R}, |\cdot|)$.

Question A.5. Let A be a subset of the metric space X.

- (i) Prove that $x \in \operatorname{cl} A$ if and only if for all $\varepsilon > 0$ we have $V_{\varepsilon}(x) \cap A \neq \emptyset$.
- (ii) Prove that $x \in cl A$ if and only if there exists a sequence in A which converges to x.
- (iii) Prove that $x \in b(A)$ if and only if for all $\varepsilon > 0$ we have $V_{\varepsilon}(x) \cap A \neq \emptyset$ and $V_{\varepsilon}(x) \cap (X-A) \neq \emptyset$.

Question A.6. Let (X, d) be a metric space. Define the distance between $x \in X$ and $A \subseteq X$ as $dist(x, A) = inf\{d(x, a) \mid a \in A\}$. Prove that if $A \subseteq X$ then $cl A = \{x \in X \mid dist(x, A) = 0\}$.

B. SUBMITTED QUESTIONS

Question B.1. Suppose $f: [a, b] \to \mathbb{R}$ is continuous and attains its absolute maximum at $c \in (a, b)$. Show that f is not injective.

Question B.2. Let (X, d) be a metric space.

- (i) Prove that $|\operatorname{dist}(x, A) \operatorname{dist}(y, A)| \le d(x, y)$ for all $x, y \in X$.
- (ii) Prove that $f: X \to \mathbb{R}$, $f(x) = \operatorname{dist}(x, A)$ is continuous.

Now suppose A, B are disjoint closed subsets of X. Show that there exists a continuous function $f: X \to \mathbb{R}$ satisfying

(a) $0 \le f(x) \le 1$ for all $x \in X$.

(b) f(a) = 0 for all $a \in A$.

(c) f(b) = 1 for all $b \in B$.

(Hint: Try $f(x) = \frac{\operatorname{dist}(x,A)}{\operatorname{dist}(x,A) + \operatorname{dist}(x,B)}$ and check it satisfies the desired properties.)

C. CHALLENGE QUESTIONS

Question C.1. Suppose (X, d) is a complete metric space and $Y \subseteq X$. Show that (Y, d) is complete if and only if Y is closed in X.

Question C.2. Let $f: (X, d_X) \to (Y, d_Y)$ be a continuous function and A a dense subset of X.

- (i) Show that if f is surjetive then f(A) is dense in Y.
- (ii) Show that if f is constant on A, then f is constant on X.