MTH436 - HOMEWORK 10

Not to be handed in, but you may want to attempt the questions before 3 pm on May 8 th...
Question 1. For the given sequences f_{n}, decide if the series $\sum f_{n}$ converges uniformly (here, $a>0$) 。
(i) $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ given by $f_{n}(x)=\frac{1}{n^{2}+x^{2}}$.
(ii) $f_{n}:[-a, a] \rightarrow \mathbb{R}$ given by $f_{n}(x)=\frac{x^{2}+n}{x^{2}+n^{3}}$.
(iii) $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ given by $f_{n}(x)=\sin \left(x / n^{2}\right)$.
(iv) $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ given by $f_{n}(x)=\frac{x^{n}}{x^{n}+1}$.
(v) $f_{n}: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$ given by $f_{n}(x)=\frac{1}{n^{2} x^{2}}$.

Question 2. Compute the Radius of convergence for the following power series.
(i) $\sum \frac{2+(-1)^{n}}{3^{n}} x^{n}$.
(ii) $\sum x^{n!}$.
(iii) $\sum a_{n} x^{n}$ where

$$
a_{n}= \begin{cases}n & \text { if } n=3 k \text { for some } k \in \mathbb{N} \cup\{0\} \\ 0 & \text { if } n=3 k+1 \text { for some } k \in \mathbb{N} \cup\{0\} \\ 4^{n} & \text { if } n=3 k+2 \text { for some } k \in \mathbb{N} \cup\{0\}\end{cases}
$$

(iv) $\sum a_{n} x^{n}$ where $0<r \leq\left|a_{n}\right| \leq s$ for all n.
(v) $\sum \frac{\sin (n)}{n} x^{n}$.
(vi) $\sum a_{n} x^{n}$ where $a_{n}=1$ if $n=m$! for some n and $a_{n}=0$ otherwise.
(vii) $\sum \frac{x^{n}}{\log n}$.
(viii) $\sum \frac{n!}{n^{n}} x^{n}$.

Question 3. Show that if f is an odd function and $f(x)=\sum a_{n} x^{n}$ then $a_{2 k}=0$ for all $k \in \mathbb{N} \cup\{0\}$.

