MTH436 - HOMEWORK 10

Not to be handed in, but you may want to attempt the questions before 3pm on May 8th...

Question 1. For the given sequences f_n , decide if the series $\sum f_n$ converges uniformly (here, a > 0).

(i) $f_n \colon \mathbb{R} \to \mathbb{R}$ given by $f_n(x) = \frac{1}{n^2 + x^2}$. (ii) $f_n: [-a, a] \to \mathbb{R}$ given by $f_n(x) = \frac{x^2 + n}{x^2 + n^3}$. (iii) $f_n: \mathbb{R} \to \mathbb{R}$ given by $f_n(x) = \sin(x/n^2)$. (iv) $f_n: \mathbb{R} \to \mathbb{R}$ given by $f_n(x) = \frac{x^n}{x^n + 1}$. (v) $f_n: \mathbb{R} - \{0\} \to \mathbb{R}$ given by $f_n(x) = \frac{1}{n^2 x^2}$.

Question 2. Compute the Radius of convergence for the following power series.

(i) $\sum \frac{2+(-1)^n}{3^n} x^n$. (ii) $\sum x^{n!}$. (iii) $\sum a_n x^n$ where

$$a_n = \begin{cases} n & \text{if } n = 3k \text{ for some } k \in \mathbb{N} \cup \{0\}, \\ 0 & \text{if } n = 3k + 1 \text{ for some } k \in \mathbb{N} \cup \{0\}, \\ 4^n & \text{if } n = 3k + 2 \text{ for some } k \in \mathbb{N} \cup \{0\}. \end{cases}$$

(iv) $\sum a_n x^n$ where $0 < r \le |a_n| \le s$ for all n.

(v)
$$\sum \frac{\sin(n)}{n} x^n$$
.

(v) $\sum \frac{a_n x^n}{n}$ where $a_n = 1$ if n = m! for some n and $a_n = 0$ otherwise. (vi) $\sum \frac{x^n}{\log n}$.

(viii)
$$\sum \frac{n!}{n^n} x^n$$
.

Question 3. Show that if f is an odd function and $f(x) = \sum a_n x^n$ then $a_{2k} = 0$ for all $k \in \mathbb{N} \cup \{0\}$.