MTH436 - HOMEWORK 1

Solutions to the questions in Section B should be submitted by the start of class on 2/6/19. Remember that you may work together and consult resources, but you should write up your answers on your own and make sure you understand them.

A. Warm-up Questions

Question A.1. Decide if the following functions are uniformly continuous.

- (i) $f(x) = \frac{1}{x^2}$ on $[2, \infty)$.
- (ii) $f(x) = \sin(\frac{1}{x})$ on (0, 1).
- (iii) $f(x) = x^2$ on \mathbb{N} .

Question A.2. Given an example of a function $f: [a, b] \cap \mathbb{Q} \to \mathbb{Q}$ which is continuous and bounded but not uniformly continuous. (This is easier than you think!)

Question A.3. Suppose $f, g: A \to \mathbb{R}$ are Lipschitz functions.

- (i) Prove that f + g is Lipschitz.
- (ii) Prove that if f and g are bounded functions then fg is Lipschitz.
- (iii) Give an example to show that if f or g is not bounded then fg is not necessarily Lipschitz.
- (iv Prove the same results with Lipschitz replaced by uniformly continuous.

Question A.4. Suppose $A \subseteq \mathbb{R}$ is bounded and $f: A \to \mathbb{R}$ is uniformly continuous. Prove that f is bounded.

Question A.5. Let $g: \mathbb{R} \to \mathbb{R}$ be defined by $g(x) = x^2$.

- (a) Prove that f is not uniformly continuous.
- (b) Suppose (x_n) is a Cauchy sequence in \mathbb{R} . Prove that $(g(x_n))$ is a Cauchy sequence.

Question A.6. Suppose $f: [0, \infty) \to \mathbb{R}$ is continuous $[0, \infty)$ and is uniformly continuous on $[a, \infty)$ for some a > 0. Prove that f is uniformly continuous.

Question A.7. Let I be an interval. We say that $f \colon I \to \mathbb{R}$ is absolutely continuous if for all $\varepsilon > 0$ there exists $\delta > 0$ such that if $\{[x_k, y_k] \mid k = 1, \dots, n\}$ is a finite collection of pairwise disjoint subintervals with $\sum_{k=1}^{n} |x_k - y_k| < \delta$ then $\sum_{k=1}^{n} |f(x_k) - f(y_k)| < \varepsilon$.

- (i) Prove that if f is absolutely continuous, it is uniformly continuous.
- (ii) Prove that if f is Lipschitz, then it is absolutely continuous.

B. Submitted Questions

Question B.1. Prove that if $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are uniformly continuous then $g \circ f$ is uniformly continuous.

Question B.2. Let $f: A \to \mathbb{R}$ be uniformly continuous and f(x) > k > 0 for all $x \in A$. Prove that $\frac{1}{f}$ is uniformly continuous.

C. CHALLENGE QUESTIONS

Question C.1. Let $f: [-1,1] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Prove that f is uniformly continuous but not absolutely continuous.

Question C.2. The Cantor set. We will construct a (relatively pathological) closed set in \mathbb{R} . We define the *Middle-thirds Cantor set* to be

$$C = \left\{ x \in [0, 1] \middle| x = \sum_{n=1}^{\infty} \frac{a_n}{3^n}, \text{ where } a_n \in [0, 2 \text{ for all } n] \right\}.$$

We can construct C using an iterative method as follows. Let $C_0 = [0, 1]$, and from C_0 remove the middle-third interval (1/3, 2/3) to obtain $C_1 = [0, 1/3] \cup [2/3, 1]$. From each of the two intervals making up C_1 , remove the middle third interval to give the set $C_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1]$. Continue in this way, removing the middle third of each of the 2^n intervals of C_n at each step. The eventual set you are left with is in fact C: formally $C = \bigcap_{i=1}^{\infty} C_i$.

- (i) Draw the sets C_n for n = 1, 2, 3, 4.
- (ii) Prove that C is closed.
- (iii) What is the sum of the length of all the removed intervals? What does this suggest about the "length" of C?
- (iv) Prove that C contains no open interval.
- (v) Show that $\phi \colon C \to [0,1]$ given by

$$\phi\left(\sum_{n=1}^{\infty} \frac{a_n}{3^n}\right) = \sum_{n=1}^{\infty} \frac{a_n}{2^n}$$

is a surjection, and deduce that C is uncountable. Does this surprise you with regards to your conclusion in part (iii)?