MTH436 - HOMEWORK 1

Solutions to the questions in Section B should be submitted by the start of class on 2/6/19. Remember that you may work together and consult resources, but you should write up your answers on your own and make sure you understand them.

A. Warm-up Questions

Question A.1. Decide if the following functions are uniformly continuous.
(i) $f(x)=\frac{1}{x^{2}}$ on $[2, \infty)$.
(ii) $f(x)=\sin \left(\frac{1}{x}\right)$ on $(0,1)$.
(iii) $f(x)=x^{2}$ on \mathbb{N}.

Question A.2. Given an example of a function $f:[a, b] \cap \mathbb{Q} \rightarrow \mathbb{Q}$ which is continuous and bounded but not uniformly continuous. (This is easier than you think!)
Question A.3. Suppose $f, g: A \rightarrow \mathbb{R}$ are Lipschitz functions.
(i) Prove that $f+g$ is Lipschitz.
(ii) Prove that if f and g are bounded functions then $f g$ is Lipschitz.
(iii) Give an example to show that if f or g is not bounded then $f g$ is not necessarily Lipschitz.
(iv Prove the same results with Lipschitz replaced by uniformly continuous.
Question A.4. Suppose $A \subseteq \mathbb{R}$ is bounded and $f: A \rightarrow \mathbb{R}$ is uniformly continuous. Prove that f is bounded.

Question A.5. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $g(x)=x^{2}$.
(a) Prove that f is not uniformly continuous.
(b) Suppose $\left(x_{n}\right)$ is a Cauchy sequence in \mathbb{R}. Prove that $\left(g\left(x_{n}\right)\right)$ is a Cauchy sequence.

Question A.6. Suppose $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous $[0, \infty)$ and is uniformly continuous on $[a, \infty)$ for some $a>0$. Prove that f is uniformly continuous.

Question A.7. Let I be an interval. We say that $f: I \rightarrow \mathbb{R}$ is absolutely continuous if for all $\varepsilon>0$ there exists $\delta>0$ such that if $\left\{\left[x_{k}, y_{k}\right] \mid k=1, \ldots, n\right\}$ is a finite collection of pairwise disjoint subintervals with $\sum_{k=1}^{n}\left|x_{k}-y_{k}\right|<\delta$ then $\sum_{k=1}^{n}\left|f\left(x_{k}\right)-f\left(y_{k}\right)\right|<\varepsilon$.
(i) Prove that if f is absolutely continuous, it is uniformly continuous.
(ii) Prove that if f is Lipschitz, then it is absolutely continuous.

B. Submitted Questions

Question B.1. Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are uniformly continuous then $g \circ f$ is uniformly continuous.

Question B.2. Let $f: A \rightarrow \mathbb{R}$ be uniformly continuous and $f(x)>k>0$ for all $x \in A$. Prove that $\frac{1}{f}$ is uniformly continuous.

C. Challenge Questions

Question C.1. Let $f:[-1,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}x \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Prove that f is uniformly continuous but not absolutely continuous.
Question C.2. The Cantor set. We will construct a (relatively pathological) closed set in \mathbb{R}. We define the Middle-thirds Cantor set to be

$$
C=\left\{x \in[0,1] \left\lvert\, x=\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}\right., \text { where } a_{n} \in 0,2 \text { for all } n\right\}
$$

We can construct C using an iterative method as follows. Let $C_{0}=[0,1]$, and from C_{0} remove the middle-third interval $(1 / 3,2 / 3)$ to obtain $C_{1}=[0,1 / 3] \cup[2 / 3,1]$. From each of the two intervals making up C_{1}, remove the middle third interval to give the set $C_{2}=[0,1 / 9] \cup[2 / 9,1 / 3] \cup[2 / 3,7 / 9] \cup$ $[8 / 9,1]$. Continue in this way, removing the middle third of each of the 2^{n} intervals of C_{n} at each step. The eventual set you are left with is in fact C : formally $C=\cap_{i=1}^{\infty} C_{i}$.
(i) Draw the sets C_{n} for $n=1,2,3,4$.
(ii) Prove that C is closed.
(iii) What is the sum of the length of all the removed intervals? What does this suggest about the "length" of C ?
(iv) Prove that C contains no open interval.
(v) Show that $\phi: C \rightarrow[0,1]$ given by

$$
\phi\left(\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}\right)=\sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}}
$$

is a surjection, and deduce that C is uncountable. Does this surprise you with regards to your conclusion in part (iii)?

