MTH436-HOMEWORK 8

Solutions to the questions in Section B should be submitted by the start of class on 4/18/18. Unless specified, you should prove results directly from the definition of the Darboux Integral, not by invoking its equivalence to the Riemann Integral.

A. Warm-up Questions

Question A.1. Define $f:[-1,1] \rightarrow \mathbb{R}, f(x)=\left|x+\frac{1}{2}\right|$. Compute $L(f, \mathcal{P})$ and $U(f, \mathcal{P})$ for the following partitions \mathcal{P}.
(i) $\mathcal{P}=(-1,1)$.
(ii) $\mathcal{P}=(-1,0,1)$.
(iii) $\mathcal{P}=(-1,-1 / 2,0,1 / 4,3 / 4,1)$.

Question A.2. Let $f_{1}, f_{2}:[a, b] \rightarrow \mathbb{R}$ be bounded.
(i) Show that if $\mathcal{P} \in \mathscr{P}([a, b])$ then $U\left(f_{1}+f_{2}, \mathcal{P}\right) \leq U\left(f_{1}, \mathcal{P}\right)+U\left(f_{2}, \mathcal{P}\right)$.
(ii) Deduce that $U\left(f_{1}+f_{2}\right) \leq U\left(f_{1}\right)+U\left(f_{2}\right)$.
(iii) Give an example where $U\left(f_{1}+f_{2}\right)<U\left(f_{1}\right)+U\left(f_{2}\right)$.

Question A.3. Suppose $f, g:[a, b] \rightarrow \mathbb{R}$ are Darboux Integrable. Show that $f+g$ is Darboux Integrable and that

$$
\int_{a}^{b} f+g=\int_{a}^{b} f+\int_{a}^{b} g
$$

Question A.4. Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded.
(i) Suppose $k>0$. Prove that $k U(f)=U(k f)$ and $k L(f)=L(k f)$.
(ii) State and prove an analogous result to the above in the case where $k<0$.

B. Submitted Questions

Question B.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be Darboux Integrable and suppose $g:[a, b] \rightarrow \mathbb{R}$ satisfies $f(x)=g(x)$ for all $x \in[a, b]-E$, where E is a finite set. Show that g is Darboux Integrable and $\int_{a}^{b} f=\int_{a}^{b} g$.

Question B.2. Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded.
(i) Show that if f is continuous then it is Darboux Integrable.
(ii) Show that if f is monotone then it is Darboux Integrable.

C. Challenge Questions

Question C.1. The Riemann-Stieltjes Integral. Let $\alpha:[a, b] \rightarrow \mathbb{R}$ be an increasing function and $f:[a, b] \rightarrow \mathbb{R}$ bounded. Given a partition $\mathcal{P}=\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in \mathscr{P}([a, b])$, define

$$
\begin{aligned}
& U(f, \mathcal{P}, \alpha)=\sum_{k=1}^{n} M_{k}\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right) \\
& U(f, \mathcal{P}, \alpha)=\sum_{k=1}^{n} m_{k}\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right)
\end{aligned}
$$

where M_{k} and m_{k} are defined as for the Darboux Integral (note that if $\alpha(x)=x$ then this just reduces to the usual Darboux Integral). Then define

$$
L_{\alpha}(f)=\sup \{L(f, \mathcal{P}, \alpha) \mid \mathcal{P} \in \mathscr{P}([a, b])\} \quad \text { and } \quad U_{\alpha}(f)=\inf \{L(f, \mathcal{P}, \alpha) \mid \mathcal{P} \in \mathscr{P}([a, b])\}
$$

We say f is Riemann-Stieltjes Integrable (and write $f \in \mathcal{R}(\alpha)$) if $L_{\alpha}(f)=U_{\alpha}(f)$. We denote this integral by $\int_{a}^{b} f \mathrm{~d} \alpha$.
(i) Prove the analogue for the Integrability Criterion for this integral.
(ii) Show that if f is continuous or monotone on $[a, b]$ then $f \in \mathcal{R}(\alpha)$.
(iii) Let $a<c<b$ and suppose $\alpha(x)=0$ for $a \leq x<c$ and $\alpha(x)=1$ for $c \leq x \leq b$. Prove that

$$
\int_{a}^{b} f \mathrm{~d} \alpha=f(c)
$$

(iv) Suppose $\alpha^{\prime} \in \mathcal{R}([a, b])$. Prove that $f \in \mathcal{R}(\alpha)$ if and only if $f \alpha^{\prime} \in \mathcal{R}([a, b])$. Furthermore

$$
\int_{a}^{b} f \mathrm{~d} \alpha=\int_{a}^{b} f(x) \alpha^{\prime}(x) \mathrm{d} x
$$

