MTH436 - HOMEWORK 8

Solutions to the questions in Section B should be submitted by the start of class on 4/18/18. Unless specified, you should prove results directly from the definition of the Darboux Integral, not by invoking its equivalence to the Riemann Integral.

A. WARM-UP QUESTIONS

Question A.1. Define $f: [-1,1] \to \mathbb{R}$, $f(x) = |x + \frac{1}{2}|$. Compute $L(f, \mathcal{P})$ and $U(f, \mathcal{P})$ for the following partitions \mathcal{P} .

- (i) $\mathcal{P} = (-1, 1).$
- (ii) $\mathcal{P} = (-1, 0, 1).$
- (iii) $\mathcal{P} = (-1, -1/2, 0, 1/4, 3/4, 1).$

Question A.2. Let $f_1, f_2: [a, b] \to \mathbb{R}$ be bounded.

- (i) Show that if $\mathcal{P} \in \mathscr{P}([a,b])$ then $U(f_1 + f_2, \mathcal{P}) \leq U(f_1, \mathcal{P}) + U(f_2, \mathcal{P})$.
- (ii) Deduce that $U(f_1 + f_2) \le U(f_1) + U(f_2)$.
- (iii) Give an example where $U(f_1 + f_2) < U(f_1) + U(f_2)$.

Question A.3. Suppose $f, g: [a, b] \to \mathbb{R}$ are Darboux Integrable. Show that f + g is Darboux Integrable and that

$$\int_{a}^{b} f + g = \int_{a}^{b} f + \int_{a}^{b} g.$$

Question A.4. Let $f: [a, b] \to \mathbb{R}$ be bounded.

- (i) Suppose k > 0. Prove that kU(f) = U(kf) and kL(f) = L(kf).
- (ii) State and prove an analogous result to the above in the case where k < 0.

B. SUBMITTED QUESTIONS

Question B.1. Let $f: [a, b] \to \mathbb{R}$ be Darboux Integrable and suppose $g: [a, b] \to \mathbb{R}$ satisfies f(x) = g(x) for all $x \in [a, b] - E$, where E is a finite set. Show that g is Darboux Integrable and $\int_a^b f = \int_a^b g$.

Question B.2. Let $f: [a, b] \to \mathbb{R}$ be bounded.

- (i) Show that if f is continuous then it is Darboux Integrable.
- (ii) Show that if f is monotone then it is Darboux Integrable.

C. CHALLENGE QUESTIONS

Question C.1. The Riemann-Stieltjes Integral. Let $\alpha : [a, b] \to \mathbb{R}$ be an increasing function and $f : [a, b] \to \mathbb{R}$ bounded. Given a partition $\mathcal{P} = (x_0, x_1, \dots, x_n) \in \mathscr{P}([a, b])$, define

$$U(f, \mathcal{P}, \alpha) = \sum_{k=1}^{n} M_k(\alpha(x_i) - \alpha(x_{i-1})),$$
$$U(f, \mathcal{P}, \alpha) = \sum_{k=1}^{n} m_k(\alpha(x_i) - \alpha(x_{i-1})).$$

where M_k and m_k are defined as for the Darboux Integral (note that if $\alpha(x) = x$ then this just reduces to the usual Darboux Integral). Then define

 $L_{\alpha}(f) = \sup\{L(f, \mathcal{P}, \alpha) \mid \mathcal{P} \in \mathscr{P}([a, b])\} \text{ and } U_{\alpha}(f) = \inf\{L(f, \mathcal{P}, \alpha) \mid \mathcal{P} \in \mathscr{P}([a, b])\}.$

We say f is Riemann-Stieltjes Integrable (and write $f \in \mathcal{R}(\alpha)$) if $L_{\alpha}(f) = U_{\alpha}(f)$. We denote this integral by $\int_{a}^{b} f \, d\alpha$.

- (i) Prove the analogue for the Integrability Criterion for this integral.
- (ii) Show that if f is continuous or monotone on [a, b] then $f \in \mathcal{R}(\alpha)$.

(iii) Let a < c < b and suppose $\alpha(x) = 0$ for $a \le x < c$ and $\alpha(x) = 1$ for $c \le x \le b$. Prove that $\int_{a}^{b} c dx = c < b$

$$\int_{a}^{b} f \, \mathrm{d}\alpha = f(c).$$

(iv) Suppose $\alpha' \in \mathcal{R}([a, b])$. Prove that $f \in \mathcal{R}(\alpha)$ if and only if $f\alpha' \in \mathcal{R}([a, b])$. Furthermore $\int_{a}^{b} f \, \mathrm{d}\alpha = \int_{a}^{b} f(x)\alpha'(x) \, \mathrm{d}x.$