MTH436 - HOMEWORK 7

Solutions to the questions in Section B should be submitted by the start of class on 4/11/18.

A. WARM-UP QUESTIONS

Question A.1. Let $f \in \mathcal{R}[a, b]$ and $c \in [a, b]$. Define $F_c(z) = \int_c^z f$ for all $z \in [a, b]$. Find a formula for F_c in terms of F_a .

Question A.2. Calculus time! Let $f \in \mathcal{R}[a, b]$ and define $F(x) = \int_a^x f$ for all $x \in [a, b]$. Find the following in terms of F.

(i) $G(x) = \int_x^b f.$ (ii) $S(x) = \int_a^{x^2} f.$ (iii) $C(x) = \int_a^{\cos x} f.$

Question A.3. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and c > 0. Define $I_f: \mathbb{R} \to \mathbb{R}$ by

$$I_f(x) = \int_{x-c}^{x+c} f$$

Show that I_f is differentiable and compute a formula for $I'_f(x)$.

Question A.4. We will prove the Integration by Substitution formula: If $J = [\alpha, \beta]$ and $\phi : J \to \mathbb{R}$ is continuously differentiable on J, and $f : I \to \mathbb{R}$ is continuous with I an interval satisfying $\phi(J) \subseteq I$ then

$$\int_{\alpha}^{\beta} f(\phi(t)) \cdot \phi'(t) \, \mathrm{d}t = \int_{\phi(a)}^{\phi(b)} f(x) \, \mathrm{d}x$$

- (i) Let $F(u) = \int_{\phi(a)}^{u} f(x) dx$ and $G(t) = F(\phi(t))$. Prove that $G'(t) = f(\phi(t)) \cdot \phi'(t)$ for all $t \in J$.
- (ii) By setting $t = \beta$, deduce the result.

Question A.5. Let μ^* be outer measure on \mathbb{R} .

- (i) If $c \in \mathbb{R}$ and $A + c = \{y \in \mathbb{R} \mid y c \in A\}$ satisfies $\mu^*(A) = \mu^*(A + c)$.
- (ii) Show that if $A \subseteq B$ then $\mu^*(A) \leq \mu^*(B)$.
- (iii) Show that $\mu^*(A \cup B) \le \mu^*(A) + \mu^*(B)$. In particular, show that the union of two null sets is also null.
- (iv) Show that if Z_n $(n \in \mathbb{N})$ are null sets then $\bigcup_{n \in \mathbb{N}} Z_n$ is null.

Question A.6. Let $f, g \in \mathcal{R}[a, b]$.

- (i) Show that if $t \in \mathbb{R}$ then $\int_a^b (tf+g)^2 \ge 0$
- (ii) Show that if t > 0 then $2\left|\int_a^b fg\right| \le t \int_a^b f^2 + \frac{1}{t} \int_a^b g^2$.

B. SUBMITTED QUESTIONS

Question B.1. Let $f: [a,b] \to \mathbb{R}$ be continuous and suppose that $\int_a^x f = \int_x^b f$ for all $x \in [a,b]$. Prove that f(x) = 0 for all $x \in [a,b]$.

Question B.2. Let $f, g \in \mathcal{R}[a, b]$.

(i) Prove that if $\int_a^b f^2 = 0$ then $\int_a^b fg = 0$.

(ii) Prove that

$$\left| \int_{a}^{b} fg \right|^{2} \leq \left(\int_{a}^{b} |fg| \right)^{2} \leq \left(\int_{a}^{b} f^{2} \right) \left(\int_{a}^{b} g^{2} \right).$$

C. CHALLENGE QUESTIONS

Question C.1. Let $f, g, h: [a, b] \to \mathbb{R}$ be continuous. Define $(f, g) = \int_0^1 fg$.

- (i) Prove that (f,g) = (g,f).
- (ii) Prove that $(\alpha f, g) = \alpha(f, g)$ for all $\alpha \in \mathbb{R}$.
- (iii) Prove that (f + h, g) = (f, g) + (h, g).
- (iv) Prove that (f, f) = 0 if and only if f(x) = 0 for all $x \in [0, 1]$.

Then prove that $||f|| = \sqrt{(f, f)}$ defines a norm on the space of continuous functions on [0, 1]. Also show that we have

$$||f||^{2} + ||g||^{2} = \frac{||x+y||^{2} + ||x-y||^{2}}{2}$$

Question C.2. We will show that outer measure is not additive. That is, it is not necessarily true that if A and B are disjoint then $\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$. We assume to the contrary.

- (i) For $x, y \in [0, 1]$, let $x \sim y$ if and only if $x y \in \mathbb{Q}$. Prove that \sim is an equivalence relation on [0, 1].
- (ii) For each equivalence class X of \sim , choose a representative $x \in X$. Let $A \subseteq [0,1]$ be the set of all these representatives. Show that if $q, r \in \mathbb{Q}$ then $(A+q) \cap (A+r) = \emptyset$.
- (iii) Let $Y = \mathbb{Q} \cap [-1, 1]$. Show that

$$[0,1] \subseteq U := \bigcap_{y \in Y} (A+y) \subseteq [-1,2].$$

(iv) Show that if $\mu^*(A) = 0$ then $\mu^*(U) = 0$.

- (v) Show that if $\mu^*(A) > 0$ then $\mu^*(U) = \infty$.
- (vi) Deduce from the previous two parts that outer measure cannot be additive.