MTH436 - HOMEWORK 6

Solutions to the questions in Section B should be submitted by the start of class on 4/4/18.

A. WARM-UP QUESTIONS

Question A.1. Suppose $f:[a,b] \to \mathbb{R}$ has the property that $f \in \mathcal{R}[c,b]$ for all $c \in (a,b)$. Is it true that $f \in \mathcal{R}[a, b]$? What if f is bounded?

Question A.2. Let $f: [0,1] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & \text{if } x \in (0,1] \\ 0 & \text{if } x = 0. \end{cases}$$

Is $f \in \mathcal{R}[0,1]$? Justify your answer.

Question A.3. Give an example of $f \in \mathcal{R}[0,1]$ for which there is no $c \in [a,b]$ such that

$$\int_{a}^{b} f = f(c)(b-a)$$

Question A.4. Let a > 0 and suppose $f \in \mathcal{R}[-a, a]$.

- (i) Show that if f is even then ∫^a_{-a} f = 2 ∫^a₀ f.
 (ii) Show that if f is odd then ∫^a_{-a} f = 0.

Question A.5. Let $f: [a, b] \to \mathbb{R}$ be continuous and $f(x) \ge 0$ for all $x \in [a, b]$. Show that if $\int_{a}^{b} f = 0 \text{ then } f(x) = 0 \text{ for all } x \in [a, b].$

B. SUBMITTED QUESTIONS

Question B.1.

(i) Let $f: [a, b] \to \mathbb{R}$ be continuous. Prove that there exists $c \in [a, b]$ such that

$$\int_{a}^{b} f = f(c)(b-a).$$

(ii) Let $f, g: [a, b] \to \mathbb{R}$ be continuous and g(x) > 0 for all $x \in [a, b]$. Prove that there exists $c \in [a, b]$ such that

$$\int_{a}^{b} fg = f(c) \int_{a}^{b} g.$$

Question B.2. Suppose $f: [-a^2, a^2] \to \mathbb{R}$ is continuous. Prove that

$$\int_{-a}^{a} f(x^{2}) \, \mathrm{d}x = 2 \int_{0}^{a} f(x^{2}) \, \mathrm{d}x.$$

C. CHALLENGE QUESTIONS

Question C.1. Let $f: [a, b] \to \mathbb{R}$ be continuous with $f(x) \ge 0$ for all $x \in [a, b]$. For $p \in \mathbb{N}$, define $||f||_p = \left(\int_a^b f^p\right)^{1/p}$ to be the *p*-norm of *f*. Prove that if we define $||f||_{\infty} = \sup\{f(x) \mid x \in [a,b]\}$ then $\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty}$.

Question C.2. Using the notation from the previous questions, show that for p = 1, 2 and ∞ , the function $d_p(f,g) = ||f - g||_p$ defines a metric on the set C([a,b]) of continuous functions on [a,b].