MTH436-HOMEWORK 6

Solutions to the questions in Section B should be submitted by the start of class on 4/4/18.

A. Warm-up Questions

Question A.1. Suppose $f:[a, b] \rightarrow \mathbb{R}$ has the property that $f \in \mathcal{R}[c, b]$ for all $c \in(a, b)$. Is it true that $f \in \mathcal{R}[a, b]$? What if f is bounded?
Question A.2. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}\sin \left(\frac{1}{x}\right) & \text { if } x \in(0,1] \\ 0 & \text { if } x=0\end{cases}
$$

Is $f \in \mathcal{R}[0,1]$? Justify your answer.
Question A.3. Give an example of $f \in \mathcal{R}[0,1]$ for which there is no $c \in[a, b]$ such that

$$
\int_{a}^{b} f=f(c)(b-a)
$$

Question A.4. Let $a>0$ and suppose $f \in \mathcal{R}[-a, a]$.
(i) Show that if f is even then $\int_{-a}^{a} f=2 \int_{0}^{a} f$.
(ii) Show that if f is odd then $\int_{-a}^{a} f=0$.

Question A.5. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and $f(x) \geq 0$ for all $x \in[a, b]$. Show that if $\int_{a}^{b} f=0$ then $f(x)=0$ for all $x \in[a, b]$.

B. Submitted Questions

Question B.1.

(i) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Prove that there exists $c \in[a, b]$ such that

$$
\int_{a}^{b} f=f(c)(b-a)
$$

(ii) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous and $g(x)>0$ for all $x \in[a, b]$. Prove that there exists $c \in[a, b]$ such that

$$
\int_{a}^{b} f g=f(c) \int_{a}^{b} g
$$

Question B.2. Suppose $f:\left[-a^{2}, a^{2}\right] \rightarrow \mathbb{R}$ is continuous. Prove that

$$
\int_{-a}^{a} f\left(x^{2}\right) \mathrm{d} x=2 \int_{0}^{a} f\left(x^{2}\right) \mathrm{d} x
$$

C. Challenge Questions

Question C.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous with $f(x) \geq 0$ for all $x \in[a, b]$. For $p \in \mathbb{N}$, define $\|f\|_{p}=\left(\int_{a}^{b} f^{p}\right)^{1 / p}$ to be the p-norm of f. Prove that if we define $\|f\|_{\infty}=\sup \{f(x) \mid x \in[a, b]\}$ then $\lim _{p \rightarrow \infty}\|f\|_{p}=\|f\|_{\infty}$.
Question C.2. Using the notation from the previous questions, show that for $p=1,2$ and ∞, the function $d_{p}(f, g)=\|f-g\|_{p}$ defines a metric on the set $C([a, b])$ of continuous functions on $[a, b]$.

