MTH436 - HOMEWORK 5

Solutions to the questions in Section B should be submitted by the start of class on 3/21/18.

A. WARM-UP QUESTIONS

Question A.1. Let $f: [0,1] \to \mathbb{R}$ be defined by $f(x) = x^2$. For the following tagged partitions $\dot{\mathcal{P}}$, compute $S(f; \dot{\mathcal{P}})$.

 $\begin{array}{l} \text{(i)} \ \dot{\mathcal{P}} = \left\{ \left(\begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}, 0 \right), \left(\begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}, \frac{1}{2} \right) \right\} \\ \text{(ii)} \ \dot{\mathcal{P}} = \left\{ \left(\begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}, \frac{1}{4} \right), \left(\begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}, \frac{3}{4} \right) \right\} \\ \text{(iii)} \ \dot{\mathcal{P}} = \left\{ \left(\begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}, \frac{1}{2} \right), \left(\begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}, 1 \right) \right\} \\ \text{(iv)} \ \dot{\mathcal{P}} = \left\{ \left(\begin{bmatrix} \frac{k-1}{n}, \frac{k}{n} \end{bmatrix}, \frac{k-1}{n} \right) | k = 1, 2, \dots, n \right\} \\ \text{(v)} \ \dot{\mathcal{P}} = \left\{ \left(\begin{bmatrix} \frac{k-1}{n}, \frac{k}{n} \end{bmatrix}, \frac{2k-1}{2n} \right) | k = 1, 2, \dots, n \right\} \\ \text{(vi)} \ \dot{\mathcal{P}} = \left\{ \left(\begin{bmatrix} \frac{k-1}{n}, \frac{k}{n} \end{bmatrix}, \frac{k}{n} \right) | k = 1, 2, \dots, n \right\} \end{array}$

Question A.2. Suppose $f \in \mathcal{R}[a, b]$. Let $(\dot{\mathcal{P}}_n)$ be a sequence of tagged partitions such that $\|\dot{\mathcal{P}}_n\| \to 0$. Prove that $\int_a^b f = \lim_{n \to \infty} S(f; \dot{\mathcal{P}}_n)$.

Question A.3. Let $\dot{\mathcal{P}} = \{(I_k = [x_{k-1}, x_k], t_k)\}_{k=1}^n$ be a tagged partition of [0, 3] with $\|\dot{\mathcal{P}}\| < \delta$. Define

$$\mathcal{P}_{1} = \{ I_{k} \in \mathcal{P} \mid t_{k} \in [0, 1] \}$$
$$\dot{\mathcal{P}}_{2} = \{ I_{k} \in \mathcal{P} \mid t_{k} \in [1, 2] \}.$$

Prove the following.

 $\begin{array}{ll} (\mathrm{i}) & [0,1-\delta] \subseteq \bigcup_{I_k \in \dot{\mathcal{P}}_1} I_k \subseteq [0,1+\delta]. \\ (\mathrm{ii}) & [1+\delta,2-\delta] \subseteq \bigcup_{I_k \in \dot{\mathcal{P}}_2} I_k \subseteq [1-\delta,2+\delta]. \end{array}$

Question A.4. Suppose $f \in \mathcal{R}[a, b]$ and $|f(x)| \leq M$ for all $x \in [a, b]$. Prove that

$$\left| \int_{a}^{b} f \right| \le M(b-a)$$

Question A.5. Show the Dirichlet function $f: [0,1] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

is not Riemann Integrable.

B. SUBMITTED QUESTIONS

Question B.1. Let $f: [a, b] \to \mathbb{R}$ is bounded. Suppose there exists two sequences of tagged partitions $(\dot{\mathcal{P}}_n)$ and $(\dot{\mathcal{Q}}_n)$ such that $\|\dot{\mathcal{P}}_n\| \to 0$ and $\|\dot{\mathcal{Q}}_n\| \to 0$ but $\lim_{n\to\infty} S(f; \dot{\mathcal{P}}_n) \neq \lim_{n\to\infty} S(f; \dot{\mathcal{Q}}_n)$. Show that $f \notin \mathcal{R}[a, b]$.

Question B.2. Let $f: [0,1] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \frac{1}{n} & \text{if } x = \frac{1}{n} \text{ for some } n \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}$$

Is $f \in \mathcal{R}[0,1]$? Justify your answer.

C. CHALLENGE QUESTIONS

Question C.1. Let C[0,1] be the set of continuous functions on [0,1]. For $f,g \in C[0,1]$, define $d(f,g) = \int_0^1 |f-g|$. Prove that d is a metric on $C[0,1]^1$. Is this metric space complete?

Question C.2. Prove that $\mathcal{R}[0,1]$ and C[0,1] are (real) vector spaces². Furthermore, show that $||f||_1 = \int_0^1 |f|$ defines a norm³ on C[0,1]. Does it define a norm on $\mathcal{R}[0,1]$?

¹You will need to assume that $C[0,1] \subseteq \mathcal{R}[0,1]$

 $^{^{2}}$ Come ask me for the definition of a vector space if you haven't seen it before

 $^{^3\}mathrm{Again},$ you can ask me if you haven't seen the definition before