MTH436-HOMEWORK 5

Solutions to the questions in Section B should be submitted by the start of class on $3 / 21 / 18$.

A. Warm-up Questions

Question A.1. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$. For the following tagged partitions $\dot{\mathcal{P}}$, compute $S(f ; \dot{\mathcal{P}})$.
(i) $\dot{\mathcal{P}}=\left\{\left(\left[0, \frac{1}{2}\right], 0\right),\left(\left[\frac{1}{2}, 1\right], \frac{1}{2}\right)\right\}$
(ii) $\dot{\mathcal{P}}=\left\{\left(\left[0, \frac{1}{2}\right], \frac{1}{4}\right),\left(\left[\frac{1}{2}, 1\right], \frac{3}{4}\right)\right\}$
(iii) $\dot{\mathcal{P}}=\left\{\left(\left[0, \frac{1}{2}\right], \frac{1}{2}\right),\left(\left[\frac{1}{2}, 1\right], 1\right)\right\}$
(iv) $\dot{\mathcal{P}}=\left\{\left.\left(\left[\frac{k-1}{n}, \frac{k}{n}\right], \frac{k-1}{n}\right) \right\rvert\, k=1,2, \ldots, n\right\}$
(v) $\dot{\mathcal{P}}=\left\{\left.\left(\left[\frac{k-1}{n}, \frac{k}{n}\right], \frac{2 k-1}{2 n}\right) \right\rvert\, k=1,2, \ldots, n\right\}$
(vi) $\dot{\mathcal{P}}=\left\{\left.\left(\left[\frac{k-1}{n}, \frac{k}{n}\right], \frac{k}{n}\right) \right\rvert\, k=1,2, \ldots, n\right\}$

Question A.2. Suppose $f \in \mathcal{R}[a, b]$. Let $\left(\dot{\mathcal{P}}_{n}\right)$ be a sequence of tagged partitions such that $\left\|\dot{\mathcal{P}}_{n}\right\| \rightarrow 0$. Prove that $\int_{a}^{b} f=\lim _{n \rightarrow \infty} S\left(f ; \dot{\mathcal{P}}_{n}\right)$.
Question A.3. Let $\dot{\mathcal{P}}=\left\{\left(I_{k}=\left[x_{k-1}, x_{k}\right], t_{k}\right)\right\}_{k=1}^{n}$ be a tagged partition of $[0,3]$ with $\|\dot{\mathcal{P}}\|<\delta$. Define

$$
\begin{aligned}
& \dot{\mathcal{P}}_{1}=\left\{I_{k} \in \mathcal{P} \mid t_{k} \in[0,1]\right\} \\
& \dot{\mathcal{P}}_{2}=\left\{I_{k} \in \mathcal{P} \mid t_{k} \in[1,2]\right\}
\end{aligned}
$$

Prove the following.
(i) $[0,1-\delta] \subseteq \bigcup_{I_{k} \in \dot{\mathcal{P}}_{1}} I_{k} \subseteq[0,1+\delta]$.
(ii) $[1+\delta, 2-\delta] \subseteq \bigcup_{I_{k} \in \dot{\mathcal{P}}_{2}} I_{k} \subseteq[1-\delta, 2+\delta]$.

Question A.4. Suppose $f \in \mathcal{R}[a, b]$ and $|f(x)| \leq M$ for all $x \in[a, b]$. Prove that

$$
\left|\int_{a}^{b} f\right| \leq M(b-a)
$$

Question A.5. Show the Dirichlet function $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

is not Riemann Integrable.

B. Submitted Questions

Question B.1. Let $f:[a, b] \rightarrow \mathbb{R}$ is bounded. Suppose there exists two sequences of tagged partitions $\left(\dot{\mathcal{P}}_{n}\right)$ and $\left(\dot{\mathcal{Q}}_{n}\right)$ such that $\left\|\dot{\mathcal{P}}_{n}\right\| \rightarrow 0$ and $\left\|\dot{\mathcal{Q}}_{n}\right\| \rightarrow 0$ but $\lim _{n \rightarrow \infty} S\left(f ; \dot{\mathcal{P}}_{n}\right) \neq \lim _{n \rightarrow \infty} S\left(f ; \dot{\mathcal{Q}}_{n}\right)$. Show that $f \notin \mathcal{R}[a, b]$.
Question B.2. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}\frac{1}{n} & \text { if } x=\frac{1}{n} \text { for some } n \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

Is $f \in \mathcal{R}[0,1]$? Justify your answer.

C. Challenge Questions

Question C.1. Let $C[0,1]$ be the set of continuous functions on $[0,1]$. For $f, g \in C[0,1]$, define $d(f, g)=\int_{0}^{1}|f-g|$. Prove that d is a metric on $C[0,1]^{1}$. Is this metric space complete?

Question C.2. Prove that $\mathcal{R}[0,1]$ and $C[0,1]$ are (real) vector spaces ${ }^{2}$. Furthermore, show that $\|f\|_{1}=\int_{0}^{1}|f|$ defines a norm ${ }^{3}$ on $\mathrm{C}[0,1]$. Does it define a norm on $\mathcal{R}[0,1]$?

[^0]
[^0]: ${ }^{1}$ You will need to assume that $C[0,1] \subseteq \mathcal{R}[0,1]$
 ${ }^{2}$ Come ask me for the definition of a vector space if you haven't seen it before
 ${ }^{3}$ Again, you can ask me if you haven't seen the definition before

