MTH436-HOMEWORK 3

Solutions to the questions in Section B should be submitted by the start of class on $2 / 21 / 18$.

A. Warm-up Questions

Question A.1. Compute the derivatives (if they exist) of the following functions.
(i) $f(x)=x^{2}+1$ if x is rational and $f(x)=2 x$ if x is irrational.
(ii) $f(x)=x|x|$
(iii) $f(x)=\frac{\sin \left(x^{2}\right)}{x}$ for $x \neq 0$ and $f(0)=0$.
(iv) $f(x)=x^{2} \sin \left(\frac{1}{x^{2}}\right)$ for $x \neq 0$ and $f(0)=0$. Prove also that f^{\prime} is unbounded on the closed interval $[-1,1]$ and so is not continuous.
Question A.2. Prove that if $f, g: I \rightarrow \mathbb{R}$ are differentiable at c then $(f+g)$ is differentiable and $(f+g)^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c)$.

Question A.3. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ and $|f(x)-f(y)| \leq(x-y)^{2}$ for all $x, y \in \mathbb{R}$. Prove that f is constant.

Question A.4. Prove that the derivative of an even function is an odd function, and vice versa.
Question A.5. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be differentiable and suppose that $\lim _{x \rightarrow \infty} f^{\prime}(x)=M$. Find $\lim _{x \rightarrow \infty}(f(x+1)-f(x))$.

Question A.6.

(i) Let $f(x)=x+2 x^{2} \sin \left(\frac{1}{x}\right)$ for $x \neq 0$ and $f(0)=0$. Show that $f^{\prime}(0)=1$ but f is not increasing in any neighbourhood of 0 .
(ii) Let $f(x)=2 x^{4}+x^{4} \cos \left(\frac{1}{x}\right)$ for $x \neq 0$ and $f(0)=0$. Show that 0 is a global minimum for f but for every neighbourhood V of 0 there exists $x, y \in V$ such that $f^{\prime}(x)>0$ and $f^{\prime}(y)<0$.

B. Submitted Questions

Question B.1. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b). Let c be an interior point of I and suppose $\lim _{x \rightarrow c} f^{\prime}(x)=L$. Prove that $f^{\prime}(c)=L$.
Question B.2. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be differentiable. Prove or disprove the following.
(i) If $\lim _{x \rightarrow \infty} f(x)=L$ then $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$.
(ii) If $\lim _{x \rightarrow \infty} f(x)=L$ and $\lim _{x \rightarrow \infty} f^{\prime}(x)=M$ then $M=0$.
(iii) If $\lim _{x \rightarrow \infty} f^{\prime}(x)=M$ then $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=M$.

C. Challenge Questions

Question C.1. Let $f:[0,2] \rightarrow \mathbb{R}$ be continuous on $[0,2]$ and differentiable on $(0,2)$. Suppose further that $f(0)=0, f(1)=1$ and $f(2)=1$. Show there exists $c \in(0,2)$ such that $f^{\prime}(c)=\frac{1}{\pi}$.

Question C.2. Let $C^{1}[0,1]$ be the set of functions on $[0,1]$ for which f^{\prime} is continuous. Show that

$$
d(f, g)=\sup \{|f(x)-g(x)| \mid x \in[0,1]\}+\sup \left\{\left|f^{\prime}(x)-g^{\prime}(x)\right| \mid x \in[0,1]\right\}
$$

defines a metric on $C^{1}[0,1]$.

