MTH435 - HOMEWORK 8

Solutions to the questions in Section B should be submitted by the start of class on 11/14/18. In this homework, the metrics d_1 , d_2 and d_{∞} on \mathbb{R}^2 are defined as follows.

$$d_1((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|$$

$$d_2((x_1, y_1), (x_2, y_2)) = \sqrt{|x_1 - x_2|^2 + |y_1 - y_2|^2}$$

$$d_\infty((x_1, y_1), (x_2, y_2)) = \max\{|x_1 - x_2|, |y_1 - y_2|\}$$

On any non-empty set X, the discrete metric δ is defined as

$$\delta(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1 & \text{if } x \neq y. \end{cases}$$

A. WARM-UP QUESTIONS

Question A.1. Draw $V_1((0,0))$ in \mathbb{R}^2 for the metrics d_1, d_2, d_∞ and δ .

Question A.2. Let (X, d) be a metric space.

- (a) Show that if $x, y \in X$, $r \in \mathbb{R}$ and d(x, y) > 2r then $V_r(x)$ and $V_r(y)$ are disjoint.
- (b) Show that if $x \neq y$ in X then there exist neighbourhoods U of x and V of y such that $U \cap V = \emptyset$.¹
- (c) Deduce that, for any metric space X containing more than one point, it is not possible that X and \emptyset are the only open subsets of X.

Question A.3. Let X = [0, 1] with the usual absolute value as a metric. Is the set $U = [0, \frac{1}{2})$ open? Is it closed?

Question A.4. Prove that if X is a discrete metric space and (x_n) is a Cauchy sequence then (x_n) is eventually constant.

Question A.5. Prove that the metrics d_1, d_2 and d_{∞} on \mathbb{R}^2 are topologically equivalent. In fact, prove that

$$\frac{1}{2}d_1(a,b) \le \frac{1}{\sqrt{2}}d_2(a,b) \le d_\infty(a,b) \le d_2(a,b) \le d_1(a,b).$$

for all $a = (x_1, y_1), b = (x_2, y_2)$ in \mathbb{R}^2 .

Question A.6. Using the notation from class, prove that if d and d' are Lipschitz equivalent metrics, then there exists K > 0 such that for all $x \in X$ we have

$$V'_{\frac{\varepsilon}{K}}(x) \subseteq V_{\varepsilon}(x) \subseteq V'_{K\varepsilon}(x).$$

Question A.7. Suppose that d and d' are equivalent metrics on a set X. Prove that (X, d) is complete if and only if (X, d') is complete,

B. SUBMITTED QUESTIONS

Question B.1. Prove that \mathbb{R}^2 equipped with d_{∞} is a complete metric space.

Question B.2. Consider the metrics d(x, y) = |x - y| and $d'(x, y) = \min\{1, |x - y|\}$.

- (a) Prove that d and d' are topologically equivalent.
- (b) Prove that d and d' are not Lipschitz equivalent.

¹This is called the *Hausdorff* property. You can remember the definition by noting that it says x and y can be "housed off" from each other.

MTH435 - HOMEWORK 8

C. CHALLENGE QUESTIONS

Question C.1. It was shown in class that one of the consequences of the Completeness Property of \mathbb{R} is that all Cauchy sequences converge. In this question, we will show that if we assume all Cauchy sequences converge *and* \mathbb{R} has the Archimedean Property then every non-empty set in \mathbb{R} which is bounded above has a least upper bound. This will prove that our definition of completeness of a metric space is equivalent to our original definition of completeness in \mathbb{R} .²

- (i) Prove that if (x_n) is an increasing sequence which is bounded above, then it is Cauchy. Deduce that all bounded monotonic sequences converge.
- (ii) Let A be a non-empty set which is bounded above. Construct a Cauchy sequence (a_n) in A as follows.
 - Let $a_1 \in A$ and u_1 be an upper bound of A. Define $p_1 = \frac{1}{2}(a_1 + u_1)$.
 - If p_1 is an upper bound of A, define $a_2 = a_1$ and $u_2 = p_1$.
 - If p_1 is not an upper bound of A, choose $a_2 \in A$ such that $a_2 > p_1$. Then define $u_2 = u_1$.
 - Continue inductively, defining $p_{k+1} = \frac{1}{2}(a_k + u_k)$. Deduce that (a_k) are (u_k) are monotonic sequences and thus converge.
- (iii) Prove that $\sup A = \lim_{n \to \infty} a_n = \lim_{n \to \infty} u_n$.

²Unless you assume \mathbb{R} does not satisfy the Archimedean property, which leads to topics such as Non-standard Analysis and *p*-adic Analysis.