MTH435 - HOMEWORK 6

Solutions to the questions in Section B should be submitted by the start of class on 11/7/18.

A. WARM-UP QUESTIONS

Question A.1. Prove the following assertions which strengthen the Root and Ratio tests.

- (a) If $\limsup |x_n|^{\frac{1}{n}} = r$ and r < 1 then $\sum x_n$ converges absolutely.
- (b) If $\limsup \left| \frac{x_{n+1}}{x_n} \right| = r$ and r < 1 then $\sum x_n$ converges absolutely.

Question A.2. Discuss the convergence or divergence of $\sum x_n$ for the following sequences.

(a) $x_n = \frac{\sqrt{n+1} - \sqrt{n}}{n}$. (b) $x_n = \frac{1}{n \log n}$. (c) $x_n = \frac{n}{2^n}$. (d) $x_n = \frac{n^n}{e^n}$. (e) $x_{2n-1} = \frac{1}{(2n-1)^2}$ and $x_{2n} = \frac{1}{(2n)^3}$. (f) $x_n = \frac{n!}{n^n}$.

Question A.3. Prove the following are metric spaces.

(a)
$$d(x,y) = \frac{|x-y|}{1+|x-y|}$$
 on \mathbb{R} .

- (a) $d(x,y) = \frac{1}{1+|x-y|}$ on \mathbb{R} . (b) $d(x,y) = \min\{1, |x-y|\}$ on \mathbb{R} .
- (c) $d((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$ on \mathbb{R}^2 .
- (d) d(x,y) = 1 if $x \neq y$ and d(x,y) = 0 if x = y on an arbitrary non-empty set X.
- (e) d(x,y) = |x-y| on \mathbb{Q} .
- (f) $d((x_1, y_1), (x_2, y_2), y) = \max\{|x_1 x_2|, |y_1 y_2|\}$ on \mathbb{R}^2 .

Question A.4. Show that the following are *not* metric spaces.

- (a) $d(x,y) = |x-y|^2$ on \mathbb{R} .
- (b) $d((x_n), (y_n)) = |\lim_{n \to \infty} (x_n y_n)|$ on the set of convergent sequences.
- (c) $d((x_n), (y_n)) = \sup\{|x_n y_n| \mid n \in \mathbb{N}\}\$ on the set of sequences of real numbers.
- (d) $d(X,Y) = \inf\{|x-y| \mid x \in X, y \in Y\}$ on the set of non-empty subsets of \mathbb{R} .

B. SUBMITTED QUESTIONS

Question B.1. Suppose $a_n > 0$ for all n. By using the following steps (or otherwise, if you find a better method!), prove that if $\sum \frac{a_n}{1+a_n}$ converges then $\sum a_n$ converges.

- (a) Show that if $\sum \frac{a_n}{1+a_n}$ converges then there exists K such that if $n \ge K$ then $0 < a_n < 1$. (b) Deduce that $n \ge K$ implies $\frac{a_n}{2} \le \frac{a_n}{1+a_n}$.
- (c) Prove that $\sum a_n$ converges.

Question B.2. Let X be the set of bounded sequences of real numbers. Define $d: X \times X \to \mathbb{R}$ by $d((x_n), (y_n)) = \sup\{|x_n - y_n| \mid n \in \mathbb{N}\}$. Prove that (X, d) is a metric space.

C. CHALLENGE QUESTIONS

Question C.1. Let X be the set of sequences (x_n) for which the associated series $\sum x_n$ is absolutely convergent and define $d: X \times X \to \mathbb{R}$ by $d((x_n), (y_n)) = \sum |x_n - y_n|$. Prove that (X, d) is a metric space.

Question C.2. Let X be a space with a semi-metric d (that is, d satisfies all the properties of a metric except it is not necessarily true that d(x, y) = 0 implies x = y.)

- (i) Prove that the relation \sim on X defined by $x \sim y$ if and only if d(x, y) = 0 is an equivalence relation on X.
- (ii) Let X/\sim be the set of equivalence classes of \sim . Prove that $(X/\sim, d')$ is a metric space, where d'([x], [y]) = d(x, y) (here, [x] denotes the equivalence class of x under ~ - you will have to check d' is well-defined).