MTH435 - HOMEWORK 6

Solutions to the questions in Section B should be submitted by the start of class on $11 / 7 / 18$.

A. Warm-up Questions

Question A.1. Prove the following assertions which strengthen the Root and Ratio tests.
(a) If $\lim \sup \left|x_{n}\right|^{\frac{1}{n}}=r$ and $r<1$ then $\sum x_{n}$ converges absolutely.
(b) If limsup $\left|\frac{x_{n+1}}{x_{n}}\right|=r$ and $r<1$ then $\sum x_{n}$ converges absolutely.

Question A.2. Discuss the convergence or divergence of $\sum x_{n}$ for the following sequences.
(a) $x_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n}$.
(b) $x_{n}=\frac{1}{n \log n}$.
(c) $x_{n}=\frac{n}{2^{n}}$.
(d) $x_{n}=\frac{n^{n}}{e^{n}}$.
(e) $x_{2 n-1}=\frac{1}{(2 n-1)^{2}}$ and $x_{2 n}=\frac{1}{(2 n)^{3}}$.
(f) $x_{n}=\frac{n!}{n^{n}}$.

Question A.3. Prove the following are metric spaces.
(a) $d(x, y)=\frac{|x-y|}{1+|x-y|}$ on \mathbb{R}.
(b) $d(x, y)=\min \{1,|x-y|\}$ on \mathbb{R}.
(c) $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ on \mathbb{R}^{2}.
(d) $d(x, y)=1$ if $x \neq y$ and $d(x, y)=0$ if $x=y$ on an arbitrary non-empty set X.
(e) $d(x, y)=|x-y|$ on \mathbb{Q}.
(f) $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), y\right)=\max \left\{\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right\}$ on \mathbb{R}^{2}.

Question A.4. Show that the following are not metric spaces.
(a) $d(x, y)=|x-y|^{2}$ on \mathbb{R}.
(b) $d\left(\left(x_{n}\right),\left(y_{n}\right)\right)=\left|\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)\right|$ on the set of convergent sequences.
(c) $d\left(\left(x_{n}\right),\left(y_{n}\right)\right)=\sup \left\{\left|x_{n}-y_{n}\right| \mid n \in \mathbb{N}\right\}$ on the set of sequences of real numbers.
(d) $d(X, Y)=\inf \{|x-y| \mid x \in X, y \in Y\}$ on the set of non-empty subsets of \mathbb{R}.

B. Submitted Questions

Question B.1. Suppose $a_{n}>0$ for all n. By using the following steps (or otherwise, if you find a better method!), prove that if $\sum \frac{a_{n}}{1+a_{n}}$ converges then $\sum a_{n}$ converges.
(a) Show that if $\sum \frac{a_{n}}{1+a_{n}}$ converges then there exists K such that if $n \geq K$ then $0<a_{n}<1$.
(b) Deduce that $n \geq K$ implies $\frac{a_{n}}{2} \leq \frac{a_{n}}{1+a_{n}}$.
(c) Prove that $\sum a_{n}$ converges.

Question B.2. Let X be the set of bounded sequences of real numbers. Define $d: X \times X \rightarrow \mathbb{R}$ by $d\left(\left(x_{n}\right),\left(y_{n}\right)\right)=\sup \left\{\left|x_{n}-y_{n}\right| \mid n \in \mathbb{N}\right\}$. Prove that (X, d) is a metric space.

C. Challenge Questions

Question C.1. Let X be the set of sequences $\left(x_{n}\right)$ for which the associated series $\sum x_{n}$ is absolutely convergent and define $d: X \times X \rightarrow \mathbb{R}$ by $d\left(\left(x_{n}\right),\left(y_{n}\right)\right)=\sum\left|x_{n}-y_{n}\right|$. Prove that (X, d) is a metric space.

Question C.2. Let X be a space with a semi-metric d (that is, d satisfies all the properties of a metric except it is not necessarily true that $d(x, y)=0$ implies $x=y$.)
(i) Prove that the relation \sim on X defined by $x \sim y$ if and only if $d(x, y)=0$ is an equivalence relation on X.
(ii) Let X / \sim be the set of equivalence classes of \sim. Prove that $\left(X / \sim, d^{\prime}\right)$ is a metric space, where $d^{\prime}([x],[y])=d(x, y)$ (here, $[x]$ denotes the equivalence class of x under \sim - you will have to check d^{\prime} is well-defined).

