MTH435-HOMEWORK 6

Solutions to the questions in Section B should be submitted by the start of class on 10/31/18.

A. Warm-up Questions

Question A.1. Decide if the following sequences are properly divergent.
(a) (\sqrt{n}).
(b) $(n \cos n)$
(c) $\left(\frac{2 n}{\sqrt{n+7}}\right)$
(d) $\left(\frac{n+1}{\sqrt{n^{2}+5}}\right)$

Question A.2. Compute the following.
(a) $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$.
(b) $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$.
(c) $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{3 n}$.

Question A.3. Give examples of the following.
(a) A properly divergent sequence that is not monotonic.
(b) An unbounded sequence that is not properly divergent.
(c) An unbounded sequence with a convergent subsequence.

Question A.4. Let $\left(x_{n}\right)$ be a sequence of non-zero real numbers. Prove or disprove the following.
(a) If $x_{n} \rightarrow 0$ then $\frac{1}{x_{n}}$ is properly divergent.
(b) If $x_{n} \rightarrow+\infty$ then $\frac{1}{x_{n}} \rightarrow 0$.

Question A.5. Prove or disprove the following.
(a) If $x_{n} \rightarrow+\infty$ and $\left(y_{n}\right)$ is convergent then $\left(x_{n}+y_{n}\right) \rightarrow+\infty$.
(b) If $x_{n} \rightarrow+\infty$ and $\left(y_{n}\right)$ is convergent then $\left(x_{n} y_{n}\right) \rightarrow+\infty$.
(c) If $x_{n} \rightarrow+\infty$ and $\left(x_{n} y_{n}\right)$ converges then $\left(y_{n}\right)$ converges.
(d) If $x_{n} \rightarrow+\infty$ and $y_{n} \rightarrow+\infty$ then ($x_{n}-y_{n}$) converges.
(e) If $\sum a_{n}$ converges then $\sum a_{n}^{2}$ converges. What if $a_{n}>0$ for all n ?
(f) If $\sum a_{n}$ converges and $a_{n}>0$ for all n then $\sum \sqrt{a_{n}}$ converges.
(g) If $\left(a_{n}\right)$ is a decreasing sequence of positive numbers and if $\sum a_{n}$ converges then $\lim _{n \rightarrow \infty} n a_{n}=0$.
(h) If (a_{n}) is such that ($n^{2} a_{n}$) converges then $\sum a_{n}$ is absolutely convergent.

B. Submitted Questions

Question B.1. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences of positive numbers and suppose $\left(\frac{x_{n}}{y_{n}}\right) \rightarrow+\infty$.
(a) Show that if $y_{n} \rightarrow+\infty$ then $x_{n} \rightarrow+\infty$.
(b) Show that if $\left(x_{n}\right)$ is a bounded sequence then $\left(y_{n}\right)$ converges.

Question B.2.

(a) Show that if $\sum a_{n}$ is absolutely convergent and $\left(b_{n}\right)$ is a bounded sequence then $\sum a_{n} b_{n}$ is absolutely convergent.
(b) Give an example of a conditionally convergent series $\sum a_{n}$ and a bounded sequence $\left(b_{n}\right)$ such that $\sum a_{n} b_{n}$ is divergent.

C. Challenge Questions

Question C.1. Another definition of e. We give an alternative definition of e and prove it is irrational. First, consider the sequence (e_{n}) defined by

$$
e_{n}=\sum_{k=0}^{n} \frac{1}{k!}=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!} .
$$

(i) Define $s_{n}=1+1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{n-1}}$ for $n \geq 1$. Prove that $s_{n} \geq e_{n}$ for all n and deduce that $\left(e_{n}\right)$ converges. We denote this limit by e.
(ii) Assume $e=p / q$ in lowest terms and show that $e-e_{q}=\frac{k}{q!}$ for some $k \in \mathbb{N}$.
(iii) Prove that $e-e_{q}<\frac{1}{q!} \sum_{k=1}^{\infty} 2^{-k}$ and obtain a contradiction to part (ii). Conclude that e is irrational.

Question C.2. We now prove that the new definition of e given in C.1. is equivalent to the definition given in class. Denote

$$
e=\sum_{n=0}^{\infty} \frac{1}{n!} .
$$

(i) Use the binomial theorem to prove that

$$
\left(1+\frac{1}{n}\right)^{n}=\sum_{k=0}^{n} \frac{1}{k!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{(k-1)}{n}\right) \leq \sum_{k=0}^{n} \frac{1}{k!}
$$

and so deduce $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \leq e$.
(ii) Use the binomial theorem to show that for all $n, m \in \mathbb{N}$ we have

$$
\left(1+\frac{1}{n}\right)^{m+n}=\sum_{k=0}^{m+n} \frac{1}{k!} \frac{(n+m)!}{(n+m-k)!} \frac{1}{n^{k}} \geq \sum_{k=0}^{m} \frac{1}{k!} \frac{(n+m)!}{(n+m-k)!} \frac{1}{n^{k}}
$$

Deduce that $\left(1+\frac{1}{n}\right)^{m+n} \geq \sum_{k=0}^{m} \frac{1}{k!}$.
(iv) Using the result of part (iii), show that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \geq \sum_{k=0}^{m} \frac{1}{k!}$. Then, taking the limit as $m \rightarrow \infty$, conclude that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \geq e$.
(v) Use the results of parts (i) and (iv) to prove that $\sum_{n=0}^{\infty} \frac{1}{n!}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)$.

