MTH435 - HOMEWORK 6

Solutions to the questions in Section B should be submitted by the start of class on 10/31/18.

A. WARM-UP QUESTIONS

Question A.1. Decide if the following sequences are properly divergent.

- (a) (\sqrt{n}) .
- (b) $(n \cos n)$
- (c) $\left(\frac{2n}{\sqrt{n+7}}\right)$ (d) $\left(\frac{n+1}{\sqrt{n^2+5}}\right)$

Question A.2. Compute the following.

- (a) $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$. (b) $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$. (c) $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{3n}$.

Question A.3. Give examples of the following.

- (a) A properly divergent sequence that is not monotonic.
- (b) An unbounded sequence that is not properly divergent.
- (c) An unbounded sequence with a convergent subsequence.

Question A.4. Let (x_n) be a sequence of non-zero real numbers. Prove or disprove the following.

- (a) If $x_n \to 0$ then $\frac{1}{x_n}$ is properly divergent. (b) If $x_n \to +\infty$ then $\frac{1}{x_n} \to 0$.

Question A.5. Prove or disprove the following

- (a) If $x_n \to +\infty$ and (y_n) is convergent then $(x_n + y_n) \to +\infty$.
- (b) If $x_n \to +\infty$ and (y_n) is convergent then $(x_n y_n) \to +\infty$.
- (c) If $x_n \to +\infty$ and $(x_n y_n)$ converges then (y_n) converges.
- (d) If $x_n \to +\infty$ and $y_n \to +\infty$ then $(x_n y_n)$ converges.
- (e) If $\sum_{n=1}^{\infty} a_n$ converges then $\sum_{n=1}^{\infty} a_n^2$ converges. What if $a_n > 0$ for all n? (f) If $\sum_{n=1}^{\infty} a_n$ converges and $a_n > 0$ for all n then $\sum_{n=1}^{\infty} \sqrt{a_n}$ converges.
- (g) If (a_n) is a decreasing sequence of positive numbers and if $\sum a_n$ converges then $\lim_{n \to \infty} na_n = 0$.
- (h) If (a_n) is such that $(n^2 a_n)$ converges then $\sum a_n$ is absolutely convergent.

B. SUBMITTED QUESTIONS

Question B.1. Let (x_n) and (y_n) be sequences of positive numbers and suppose $\left(\frac{x_n}{y_n}\right) \to +\infty$.

- (a) Show that if $y_n \to +\infty$ then $x_n \to +\infty$.
- (b) Show that if (x_n) is a bounded sequence then (y_n) converges.

Question B.2.

- (a) Show that if $\sum a_n$ is absolutely convergent and (b_n) is a bounded sequence then $\sum a_n b_n$ is absolutely convergent.
- (b) Give an example of a conditionally convergent series $\sum a_n$ and a bounded sequence (b_n) such that $\sum a_n b_n$ is divergent.

C. CHALLENGE QUESTIONS

Question C.1. Another definition of e. We give an alternative definition of e and prove it is irrational. First, consider the sequence (e_n) defined by

$$e_n = \sum_{k=0}^n \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}.$$

MTH435 - HOMEWORK 6

- (i) Define $s_n = 1 + 1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}}$ for $n \ge 1$. Prove that $s_n \ge e_n$ for all n and deduce that (e_n) converges. We denote this limit by e.
- (ii) Assume e = p/q in lowest terms and show that $e e_q = \frac{k}{q!}$ for some $k \in \mathbb{N}$. (iii) Prove that $e e_q < \frac{1}{q!} \sum_{k=1}^{\infty} 2^{-k}$ and obtain a contradiction to part (ii). Conclude that e is irrational.

Question C.2. We now prove that the new definition of e given in C.1. is equivalent to the definition given in class. Denote

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}.$$

(i) Use the binomial theorem to prove that

$$\left(1+\frac{1}{n}\right)^n = \sum_{k=0}^n \frac{1}{k!} \left(1-\frac{1}{n}\right) \left(1-\frac{2}{n}\right) \cdots \left(1-\frac{(k-1)}{n}\right) \le \sum_{k=0}^n \frac{1}{k!}$$
deduce $\lim_{k \to \infty} \left(1+\frac{1}{n}\right)^n \le e$

and so deduce $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right) \le e$.

(ii) Use the binomial theorem to show that for all $n, m \in \mathbb{N}$ we have

$$\left(1+\frac{1}{n}\right)^{m+n} = \sum_{k=0}^{m+n} \frac{1}{k!} \frac{(n+m)!}{(n+m-k)!} \frac{1}{n^k} \ge \sum_{k=0}^m \frac{1}{k!} \frac{(n+m)!}{(n+m-k)!} \frac{1}{n^k}$$

- Deduce that $\left(1+\frac{1}{n}\right)^{m+n} \ge \sum_{k=0}^{m} \frac{1}{k!}$. (iv) Using the result of part (iii), show that $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n \ge \sum_{k=0}^{m} \frac{1}{k!}$. Then, taking the limit as $m \to \infty$, conclude that $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n \ge e$. (v) Use the results of parts (i) and (iv) to prove that $\sum_{n=0}^{\infty} \frac{1}{n!} = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)$.