MTH435 - HOMEWORK 5

Solutions to the questions in Section B should be submitted by the start of class on 10/17/18.

A. WARM-UP QUESTIONS

Question A.1. Using the definition, decide whether or not the following sequences are Cauchy: $x_n = \frac{1}{n(n+1)}, y_n = \sqrt{n}$ and $z_n = \frac{n-1}{n}$.

Question A.2. Let (x_n) and (y_n) be Cauchy sequences. Directly from the definition...

- (a) Prove that $(x_n + y_n)$ is Cauchy.
- (b) Prove that $(x_n y_n)$ is Cauchy.
- (c) Prove that $|x_n y_n|$ converges.
- (d) Prove that if $x_n \in \mathbb{Z}$ for all $n \in \mathbb{N}$ then (x_n) is eventually constant.

Question A.3. Prove or disprove the following for a sequence (x_n) .

- (a) (x_n) is Cauchy if and only if $\lim_{n\to\infty} |x_{n+1} x_n| = 0$.
- (b) (x_n) is contractive if and only if it is Cauchy.

Question A.4. Let $x_1 = 5$ and $x_{n+1} = \frac{1}{2+x_n}$.

- (a) Prove that (x_n) is contractive.
- (b) Find the limit of (x_n) .

Question A.5. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 3 - \frac{x}{2}$. Define a sequence by $x_1 = 10$ and $x_{n+1} = f(x_n)$.

- (a) Prove that x_n converges.
- (b) Prove that $x = \lim_{n \to \infty} x_n$ is the unique real number satisfying f(x) = x.
- (c) Prove that the value of the limit x does not depend on the initial choice of x_1 .

B. SUBMITTED QUESTIONS

Question B.1. Suppose (x_n) is a bounded, increasing sequence. Prove directly (without referring to the Monotone Convergence Theorem or the Cauchy Convergence Criterion) that (x_n) is Cauchy.

Question B.2. Let $x_1 = 4$ and $x_{n+1} = 2 + \frac{1}{x_n}$. Prove that (x_n) converges and find the limit.

C. CHALLENGE QUESTIONS

Question C.1. Contraction Mapping Theorem. Suppose $f : \mathbb{R} \to \mathbb{R}$ is contractive. That is, there exists $0 \leq \ell < 1$ such that $|f(x) - f(y)| \leq \ell |x - y|$ for all $x, y \in \mathbb{R}$. Let $x_1 \in \mathbb{R}$ and define a recursive sequence by $x_{n+1} = f(x_n)$. You may assume $\lim_{n\to\infty} f(x_n) = f(\lim_{n\to\infty} x_n)$.

- (a) Prove that there exists $x \in \mathbb{R}$ such that $x_n \to x$.
- (b) Prove that x must satisfy f(x) = x, and is the unique solution to this equation.
- (c) Deduce that x is independent of the initial choice of x_1 .

Question C.2. Completion of \mathbb{Q} . Consider the set $\mathcal{C}(\mathbb{Q})$ of Cauchy sequences with all terms in \mathbb{Q} . Define a relation \sim on $\mathcal{C}(\mathbb{Q})$ by $(x_n) \sim (y_n)$ if and only if $(x_n - y_n) \to 0$.

- (a) Show that \sim is an equivalence relation on $\mathcal{C}(\mathbb{Q})$.
- (b) Let X^* be the set of equivalence classes of \sim . Let $X, Y \in X^*$ and for $(x_n) \in X$, $y_n \in Y$, define $D: x^* \times X^* \to \mathbb{R}$ by $D(X, y_n) = \lim_{n \to \infty} |x_n y_n|$. Prove that D is well-defined; that is, it does not depend on the chosen representatives x_n and y_n .
- (c) Prove the following.
 - (i) D(X, Y) = 0 if and only if X = Y.
 - (ii) D(X,Y) = D(Y,X) for all $X, Y \in X^*$.
 - (iii) $D(X,Y) \le D(X,Z) + D(Z,Y)$ for all $X, Y, Z \in X^*$.
- (d) (*Hard*) Prove that X^* is complete; that is, all Cauchy sequences converge in X^* . (Cauchy and convergence are defined analogously to in the real numbers, but with D instead of the absolute value used to measure distance).