MTH435 - HOMEWORK 5

Solutions to the questions in Section B should be submitted by the start of class on 10/17/18.

A. Warm-up Questions

Question A.1. Using the definition, decide whether or not the following sequences are Cauchy: $x_{n}=\frac{1}{n(n+1)}, y_{n}=\sqrt{n}$ and $z_{n}=\frac{n-1}{n}$.
Question A.2. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be Cauchy sequences. Directly from the definition...
(a) Prove that $\left(x_{n}+y_{n}\right)$ is Cauchy.
(b) Prove that $\left(x_{n} y_{n}\right)$ is Cauchy.
(c) Prove that $\left|x_{n}-y_{n}\right|$ converges.
(d) Prove that if $x_{n} \in \mathbb{Z}$ for all $n \in \mathbb{N}$ then $\left(x_{n}\right)$ is eventually constant.

Question A.3. Prove or disprove the following for a sequence $\left(x_{n}\right)$.
(a) $\left(x_{n}\right)$ is Cauchy if and only if $\lim _{n \rightarrow \infty}\left|x_{n+1}-x_{n}\right|=0$.
(b) $\left(x_{n}\right)$ is contractive if and only if it is Cauchy.

Question A.4. Let $x_{1}=5$ and $x_{n+1}=\frac{1}{2+x_{n}}$.
(a) Prove that $\left(x_{n}\right)$ is contractive.
(b) Find the limit of $\left(x_{n}\right)$.

Question A.5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=3-\frac{x}{2}$. Define a sequence by $x_{1}=10$ and $x_{n+1}=f\left(x_{n}\right)$.
(a) Prove that x_{n} converges.
(b) Prove that $x=\lim _{n \rightarrow \infty} x_{n}$ is the unique real number satisfying $f(x)=x$.
(c) Prove that the value of the limit x does not depend on the initial choice of x_{1}.

B. Submitted Questions

Question B.1. Suppose $\left(x_{n}\right)$ is a bounded, increasing sequence. Prove directly (without referring to the Monotone Convergence Theorem or the Cauchy Convergence Criterion) that $\left(x_{n}\right)$ is Cauchy.
Question B.2. Let $x_{1}=4$ and $x_{n+1}=2+\frac{1}{x_{n}}$. Prove that $\left(x_{n}\right)$ converges and find the limit.

C. Challenge Questions

Question C.1. Contraction Mapping Theorem. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is contractive. That is, there exists $0 \leq \ell<1$ such that $|f(x)-f(y)| \leq \ell|x-y|$ for all $x, y \in \mathbb{R}$. Let $x_{1} \in \mathbb{R}$ and define a recursive sequence by $x_{n+1}=f\left(x_{n}\right)$. You may assume $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(\lim _{n \rightarrow \infty} x_{n}\right)$.
(a) Prove that there exists $x \in \mathbb{R}$ such that $x_{n} \rightarrow x$.
(b) Prove that x must satisfy $f(x)=x$, and is the unique solution to this equation.
(c) Deduce that x is independent of the initial choice of x_{1}.

Question C.2. Completion of \mathbb{Q}. Consider the set $\mathcal{C}(\mathbb{Q})$ of Cauchy sequences with all terms in \mathbb{Q}. Define a relation \sim on $\mathcal{C}(\mathbb{Q})$ by $\left(x_{n}\right) \sim\left(y_{n}\right)$ if and only if $\left(x_{n}-y_{n}\right) \rightarrow 0$.
(a) Show that \sim is an equivalence relation on $\mathcal{C}(\mathbb{Q})$.
(b) Let X^{*} be the set of equivalence classes of \sim. Let $X, Y \in X^{*}$ and for $\left(x_{n}\right) \in X, y_{n} \in Y$, define $D: x^{*} \times X^{*} \rightarrow \mathbb{R}$ by $D\left(X, y_{n}\right)=\lim _{n \rightarrow \infty}\left|x_{n}-y_{n}\right|$. Prove that D is well-defined; that is, it does not depend on the chosen representatives x_{n} and y_{n}.
(c) Prove the following.
(i) $D(X, Y)=0$ if and only if $X=Y$.
(ii) $D(X, Y)=D(Y, X)$ for all $X, Y \in X^{*}$.
(iii) $D(X, Y) \leq D(X, Z)+D(Z, Y)$ for all $X, Y, Z \in X^{*}$.
(d) (Hard) Prove that X^{*} is complete; that is, all Cauchy sequences converge in X^{*}. (Cauchy and convergence are defined analogously to in the real numbers, but with D instead of the absolute value used to measure distance).

