MTH435 - HOMEWORK 3

Solutions to the questions in Section B should be submitted by the start of class on 10/10/18.

A. Warm-up Questions

Question A.1. Exercises from class.
(a) Show that the following are equivalent for a sequence $\left(x_{n}\right)$.
(i) $\left(x_{n}\right)$ does not converge to x.
(ii) There exists $\varepsilon>0$ such that for all $k \in \mathbb{N}$ there exists $n_{k} \geq k$ such that $\left|x_{n_{k}}-x\right| \geq \varepsilon$.
(iii) There exists a subsequence $\left(x_{n_{k}}\right)$ such that $\left|x_{n_{k}}-x\right| \geq \varepsilon$ for all $k \in \mathbb{N}$.
(b) Let $\left(x_{n}\right)$ be a bounded sequence and as in class, define $u_{n}=\sup \left\{x_{m} \mid m \geq n\right\}$ and $v_{n}=\inf \left\{x_{m} \mid m \geq n\right\}$.
(i) Prove that $\left(u_{n}\right)$ is decreasing and $\left(v_{n}\right)$ is increasing.
(ii) Prove that $\left(u_{n}\right)$ and $\left(v_{n}\right)$ converge.

Question A.2. Give examples of the following.
(a) A sequence with infinitely many ceiling terms ${ }^{1}$ and infinitely many floor terms.
(b) A sequence with no floor terms and no ceiling terms.
(c) An unbounded sequence which has a convergent subsequence.

Question A.3. For the following recursive sequences, decide if $x=\lim _{n \rightarrow \infty} x_{n}$ exists and if possible, find x.
(a) $x_{1}=100$ and $x_{n+1}=\frac{x_{n}}{10}+9$.
(b) $x_{1}=2$ and $x_{n+1}=x_{n}^{2}-1$.
(c) $x_{1}=\frac{5}{2}$ and $x_{n+1}=\frac{1}{5}\left(x_{n}^{2}+6\right)$.
(d) $x_{1}=4$ and $x_{n+1}=2+\frac{1}{x_{n}}$.
(e) $x_{1}=1$ and $x_{n+1}=x_{n}+\frac{1}{x_{n}}$.

Question A.4. Compute $\lim \sup x_{n}$ and $\lim \inf x_{n}$ for the following sequences.
(a) $x_{n}=\sin \left(\frac{n \pi}{2}\right)$.
(b) $x_{n}=1+\frac{\sin (n)}{n}$.
(c) $x_{n}=(-1)^{n}\left(1+\frac{1}{n}\right)$.

Question A.5. For the following pairs of sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$, compute $\lim \inf \left(x_{n}\right)+\liminf \left(y_{n}\right)$, $\lim \inf \left(x_{n}+y_{n}\right)$ and $\lim \sup \left(x_{n}\right)+\liminf \left(y_{n}\right)$.
(a) $x_{n}=1+\frac{1}{n}$ and $y_{n}=1-\frac{1}{n}$.
(b) $x_{n}=(-1)^{n}$ and $y_{n}=(-1)^{n+1}$.
(c) $x_{n}=y_{n}=(-1)^{n}$.

Question A.6. Let x_{n} be a bounded sequence. Prove that

$$
\liminf \left(x_{n}\right)=-\lim \sup \left(-x_{n}\right)
$$

B. Submitted Questions

Question B.1. Consider the recursive sequence defined by $x_{1}=11$ and $x_{n+1}=\sqrt{5+x_{n}}$. Prove that $\left(x_{n}\right)$ converges and find the limit.
Question B.2. Suppose $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are bounded sequences. Prove that

$$
\liminf \left(x_{n}\right)+\liminf \left(y_{n}\right) \leq \liminf \left(x_{n}+y_{n}\right) \leq \lim \sup \left(x_{n}\right)+\lim \inf \left(y_{n}\right)
$$

C. Challenge Questions

Question C.1. Let $a, b>0$. Let $\left(x_{n}\right)$ be defined recursively by $x_{1}=a$ and $x_{n+1}=\sqrt{b+x_{n}}$. Show that $\left(x_{n}\right)$ converges to $\frac{1+\sqrt{1+4 b}}{2}$. Hint: To show monotonicity, it may help to prove the equality $\left(x_{n+1}-x_{n}\right)\left(x_{n+1}+x_{n}\right)=x_{n}-x_{n-1}$ and compare signs.

[^0]
[^0]: ${ }^{1}$ Analogously to floor terms, a term x_{C} is a ceiling term if $x_{C} \geq x_{n}$ for all $n \geq C$.

