MTH435 - HOMEWORK 3

Solutions to the questions in Section B should be submitted by the start of class on 10/03/18.

A. WARM-UP QUESTIONS

Question A.1. Exercises from class.

- (i) Suppose $x_n \to x$ and $c \in \mathbb{R}$. Show that $\lim_{n\to\infty} cx_n = cx$.
- (ii) Suppose $x_n \to x > 0$. Show that eventually $x_n \ge 0$.

Question A.2. Let $x, y \in \mathbb{R}$. Prove the following identities.

- (i) $\max\{x, y\} = \frac{1}{2}(x + y + |x y|).$
- (ii) $\min\{x, y\} = \frac{1}{2}(x + y |x y|).$

Now suppose (x_n) and (y_n) are convergent sequences and define the sequences $M_n = \max\{x_n, y_n\}$ and $m_n = \min\{x_n, y_n\}$. Prove that (M_n) and (m_n) converge.

Question A.3. Use the limit laws to find the limits of the following sequences.

- (i) $\frac{\sin(\sqrt{n})+5}{2}$
- (i) n . (ii) $\frac{3n^2+5n+19}{4n^2+16}$. (iii) $\frac{3+(-1)^n n}{n^2}$.

(iv)
$$\frac{2^{3n}}{3^{2n}}$$
.

(v)
$$\sqrt{n^2 + 5n} - n$$
.

(vi) $\sqrt[n]{a^n + b^n}$ where 0 < a < b (Hint: Find good bread for your sandwich!)

Question A.4. Prove or disprove the following for sequences (x_n) and (y_n) .

- (i) If $(x_n + y_n)$ converges then (x_n) and (y_n) converge.
- (ii) If $(x_n y_n)$ converges and (x_n) converges then (y_n) converges.
- (iii) If $(x_n y_n)$ converges and (x_n) converges to $x \neq 0$ then (y_n) converges.
- (iv) If (x_n) converges and $y_n = x_{n+1} x_n$ then (y_n) converges.
- (v) If $y_n = x_{n+1} x_n$ converges to 0 then (x_n) converges.

B. SUBMITTED QUESTIONS

Question B.1. Suppose that for all $\varepsilon > 0$ there exists K such that $n \ge K$ implies $|x_n - y_n| < \varepsilon$. Prove that (x_n) converges if and only if (y_n) converges.

Question B.2. Suppose $x_n \to 0$ and (y_n) is bounded. Prove or disprove that $(x_n y_n)$ is convergent.

C. CHALLENGE QUESTIONS

Question C.1. You may find previous homework sheets useful for this. Let $\mathcal{T} = \{U \subseteq \mathbb{R} \mid$ U is open $\}$.

(T1) Show that $\mathbb{R}, \emptyset \in \mathcal{T}$.

(T2) Show that if $(U_t)_{t\in T}$ is any family of members of \mathcal{T} , then $\bigcup_{t\in T} U_t$ is in \mathcal{T} .

(T3) Show that if $U_1, U_2 \in \mathcal{T}$ then $U_1 \cap U_2 \in \mathcal{T}$.

Any collection of subsets \mathcal{T} satisfying (T1), (T2) and (T3) is called a *topology* for \mathbb{R} .

Question C.2. Prove the following are topologies on \mathbb{R} .

(i) $\mathcal{T} = \mathcal{P}(\mathbb{R}) = \{ U \mid U \subseteq \mathbb{R} \}.$

(ii)
$$\mathcal{T} = \{ \emptyset, \mathbb{R} \}.$$

(iii) $\mathcal{T} = \{ U \subset \mathbb{R} \mid \mathbb{R} - U \text{ is finite} \} \cup \{ \emptyset \}.$