MTH435 - HOMEWORK 2

Solutions to the questions in Section B should be submitted by the start of class on 09/26/18.

A. Warm-up Questions

Question A.1. We investigate the necessity of the assumptions in the Nested Intervals Property.
(i) Closed: Let $I_{n}=\left(0, \frac{1}{n}\right)$. Prove that $\bigcap I_{n}=\varnothing$.
(ii) Bounded: Let $I_{n}=[n, \infty)$. Prove that $\bigcap I_{n}=\varnothing$.
(iii) Nested: Let $I_{n}=[n, n+1]$. Prove that $\bigcap I_{n}=\varnothing$.
(iv) Completeness: Let $I_{n}=\left[\sqrt{2}, \sqrt{2}+\frac{1}{n}\right] \cap \mathbb{Q}$. Prove that $\bigcap I_{n}=\varnothing$.

Question A.2. Use the definition of convergence to prove the following limits.
(i) $\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$
(ii) $\lim _{n \rightarrow \infty} \frac{1}{n}\left(\cos \left(n^{2}+5\right)-\sin \left(2 n^{3}\right)\right)=0$
(iii) $\lim _{n \rightarrow \infty} \sqrt{4+\frac{1}{n}}=2$
(iv) (Harder?) $\lim _{n \rightarrow \infty} \sqrt{n(n+1)}-n=\frac{1}{2}$

Question A.3. Prove or provide a counterexample to the following.
(i) If $x_{n} \geq 0$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} x_{n}=x$ then $x \geq 0$.
(ii) If $x_{n}>0$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} x_{n}=x$ then $x>0$.

Question A.4. Prove that if $x_{n} \geq 0$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow x$ then $\sqrt{x_{n}} \rightarrow \sqrt{x}$. You may like to use the following steps.
(i) Show that if $x_{n} \rightarrow 0$ then $\sqrt{x_{n}} \rightarrow 0$.
(ii) Prove that if $a, b \geq 0$ then

$$
\sqrt{a}-\sqrt{b}=\frac{a-b}{\sqrt{a}+\sqrt{b}}
$$

(iii) Use part (ii) to show that if $x>0$ and $x_{n} \rightarrow x$ then $\sqrt{x_{n}} \rightarrow \sqrt{x}$.

B. Submitted Questions

Question B.1. Suppose $I_{n}=\left[a_{n}, b_{n}\right]$ is a nested sequence of closed, bounded intervals. Define $\xi=\sup \left\{a_{n} \mid n \in \mathbb{N}\right\}$ and $\eta=\inf \left\{b_{n} \mid n \in N\right\}$. Prove that $\bigcap_{n \in \mathbb{N}} I_{n}=[\xi, \eta]$.
Question B.2. Prove or give a counterexample to the following. Let $\left(x_{n}\right)$ be a sequence.
(i) If $\left(x_{n}\right)$ converges then $\left(\left|x_{n}\right|\right)$ converges.
(ii) If $\left(\left|x_{n}\right|\right)$ converges then x_{n} converges.

C. Challenge Questions

Question C.1. Show that $x_{n} \rightarrow x$ if and only if for every neighbourhood U of x there exist only finitely many $n \in \mathbb{N}$ such that $x_{n} \notin U$.

Question C.2. Let $A \subset \mathbb{R}$. We call $x \in \mathbb{R}$ a limit point of A if for every neighbourhood U of x there exists $a \in A$ such that $a \in U$. Denote the set of limit points of A by \bar{A}^{1}.
(i) Compute $\overline{(0,1)}, \overline{[0,1]}, \overline{\{1 / n \mid n \in \mathbb{N}\}}$ and $\overline{\mathbb{Q}}$.
(ii) Show that $x \in \bar{A}$ if and only if there exists a sequence $\left(x_{n}\right) \rightarrow x$ with $x_{n} \in A$ for all $n \in \mathbb{N}$.
(iii) Prove that A is closed if and only if $A=\bar{A}$.

Question C.3. Let $a>0$ and $n \in \mathbb{N}$. By following the argument that $\sqrt{2}$ exists, or otherwise, prove that there exists $b \in \mathbb{R}$ such that $b^{n}=a$.

[^0]
[^0]: ${ }^{1}$ This set is called the closure of A

