MTH435 - HOMEWORK 2

Solutions to the questions in Section B should be submitted by the start of class on 09/26/18.

A. WARM-UP QUESTIONS

Question A.1. We investigate the necessity of the assumptions in the Nested Intervals Property.

- (i) Closed: Let $I_n = (0, \frac{1}{n})$. Prove that $\bigcap I_n = \emptyset$.
- (ii) Bounded: Let $I_n = [n, \infty)$. Prove that $\bigcap I_n = \emptyset$.
- (iii) Nested: Let $I_n = [n, n+1]$. Prove that $\bigcap I_n = \emptyset$.
- (iv) Completeness: Let $I_n = \left[\sqrt{2}, \sqrt{2} + \frac{1}{n}\right] \cap \mathbb{Q}$. Prove that $\bigcap I_n = \emptyset$.

Question A.2. Use the definition of convergence to prove the following limits.

(i)
$$\lim_{n \to \infty} \frac{n}{n+1} = 1$$

(ii)
$$\lim_{n \to \infty} \frac{1}{n} (\cos(n^2 + 5) - \sin(2n^3)) = 0$$

(iii)
$$\lim_{n \to \infty} \sqrt{4 + \frac{1}{n}} = 2$$

(iv) (*Harder?*)
$$\lim_{n \to \infty} \sqrt{n(n+1)} - n = \frac{1}{2}$$

Question A.3. Prove or provide a counterexample to the following.

- (i) If $x_n \ge 0$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} x_n = x$ then $x \ge 0$.
- (ii) If $x_n > 0$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} x_n = x$ then x > 0.

Question A.4. Prove that if $x_n \ge 0$ for all $n \in \mathbb{N}$ and $x_n \to x$ then $\sqrt{x_n} \to \sqrt{x}$. You may like to use the following steps.

- (i) Show that if $x_n \to 0$ then $\sqrt{x_n} \to 0$.
- (ii) Prove that if $a, b \ge 0$ then

$$\sqrt{a} - \sqrt{b} = \frac{a - b}{\sqrt{a} + \sqrt{b}}.$$

(iii) Use part (ii) to show that if x > 0 and $x_n \to x$ then $\sqrt{x_n} \to \sqrt{x}$.

B. SUBMITTED QUESTIONS

Question B.1. Suppose $I_n = [a_n, b_n]$ is a nested sequence of closed, bounded intervals. Define $\xi = \sup\{a_n \mid n \in \mathbb{N}\}$ and $\eta = \inf\{b_n \mid n \in \mathbb{N}\}$. Prove that $\bigcap I_n = [\xi, \eta]$.

Question B.2. Prove or give a counterexample to the following. Let (x_n) be a sequence.

- (i) If (x_n) converges then $(|x_n|)$ converges.
- (ii) If $(|x_n|)$ converges then x_n converges.

C. CHALLENGE QUESTIONS

Question C.1. Show that $x_n \to x$ if and only if for every neighbourhood U of x there exist only finitely many $n \in \mathbb{N}$ such that $x_n \notin U$.

Question C.2. Let $A \subset \mathbb{R}$. We call $x \in \mathbb{R}$ a *limit point* of A if for every neighbourhood U of x there exists $a \in A$ such that $a \in U$. Denote the set of limit points of A by \overline{A}^1 .

- (i) Compute $\overline{(0,1)}, \overline{[0,1]}, \overline{\{1/n \mid n \in \mathbb{N}\}}$ and $\overline{\mathbb{Q}}$.
- (ii) Show that $x \in \overline{A}$ if and only if there exists a sequence $(x_n) \to x$ with $x_n \in A$ for all $n \in \mathbb{N}$.
- (iii) Prove that A is closed if and only if $A = \overline{A}$.

Question C.3. Let a > 0 and $n \in \mathbb{N}$. By following the argument that $\sqrt{2}$ exists, or otherwise, prove that there exists $b \in \mathbb{R}$ such that $b^n = a$.

¹This set is called the *closure* of A