MTH435 - HOMEWORK 10

Here are some questions (mostly on the EVT and IVT) to help you prepare for the final.

Question 1. Let $f: [0,1] \to [0,1]$ be continuous. Prove that there exists $c \in [0,1]$ such that f(c) = c. Is this true if we replace [0,1] by (0,1)?

Question 2. Prove that if f is a polynomial of odd degree, then f has a real root.

Question 3. Suppose $f, g: \mathbb{R} \to \mathbb{R}$ are continuous and f(x) = g(x) for all $x \in \mathbb{Q}$. Prove that f(x) = g(x) for all x.

Question 4. Suppose $f: \mathbb{R} \to \mathbb{R}$ is continuous at c and that f takes both positive and negative values in every neighbourhood of c. Prove that f(c) = 0.

Question 5. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous with $\lim_{x\to -\infty} f(x) = 0$ and $\lim_{x\to +\infty} f(x) = 0$. Show that f has a global maximum or a global minimum on \mathbb{R} , but may not have both.

Question 6. Let $f: [0,1] \to [0,1]$ be continuous with f(0) = f(1). Prove that there exists $c \in [0,\frac{1}{2}]$ such that $f(c) = f(c + \frac{1}{2})$.

Question 7. Let $f: [a,b] \to \mathbb{R}$ satisfy f(x) > 0 for all $x \in [a,b]$. Prove there exists y > 0 such that $f(x) \ge y$ for all $x \in [a,b]$.

Question 8. Let $f, g: [a, b] \to \mathbb{R}$ be continuous and define $E = \{x \in [a, b] \mid f(x) = g(x)\}$. Prove that if (x_n) is a sequence with $x_n \in E$ for all n and $x_n \to x$, then $x \in E$.