MTH435 - HOMEWORK 10

Here are some questions (mostly on the EVT and IVT) to help you prepare for the final.
Question 1. Let $f:[0,1] \rightarrow[0,1]$ be continuous. Prove that there exists $c \in[0,1]$ such that $f(c)=c$. Is this true if we replace $[0,1]$ by $(0,1) ?$
Question 2. Prove that if f is a polynomial of odd degree, then f has a real root.
Question 3. Suppose $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and $f(x)=g(x)$ for all $x \in \mathbb{Q}$. Prove that $f(x)=g(x)$ for all x.
Question 4. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at c and that f takes both positive and negative values in every neighbourhood of c. Prove that $f(c)=0$.

Question 5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous with $\lim _{x \rightarrow-\infty} f(x)=0$ and $\lim _{x \rightarrow+\infty} f(x)=0$. Show that f has a global maximum or a global minimum on \mathbb{R}, but may not have both.
Question 6. Let $f:[0,1] \rightarrow[0,1]$ be continuous with $f(0)=f(1)$. Prove that there exists $c \in\left[0, \frac{1}{2}\right]$ such that $f(c)=f\left(c+\frac{1}{2}\right)$.
Question 7. Let $f:[a, b] \rightarrow \mathbb{R}$ satisfy $f(x)>0$ for all $x \in[a, b]$. Prove there exists $y>0$ such that $f(x) \geq y$ for all $x \in[a, b]$.
Question 8. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous and define $E=\{x \in[a, b] \mid f(x)=g(x)\}$. Prove that if $\left(x_{n}\right)$ is a sequence with $x_{n} \in E$ for all n and $x_{n} \rightarrow x$, then $x \in E$.

