MTH435 - HOMEWORK 1

Solutions to the questions in Section B should be submitted by the start of class on 09/19/18.

A. WARM-UP QUESTIONS

Question A.1. Solve the following inequalities.

(i) $x < \frac{1}{x}$. (ii) $|x+1| + |x-2| \le 2$. (iii) $x - 1 \le |x - 2|$. (iv) $|x^2 - 2| < 3$.

Question A.2. Let $a, b \in \mathbb{R}$. Prove the following.

- (i) $\max\{a, b\} = \frac{1}{2}(a+b+|a-b|).$ (ii) $\min\{a, b\} = \frac{1}{2}(a+b-|a-b|).$
- (iii) $\max\{\max\{a, \bar{b}\}, c\}.$

Question A.3. Prove the following for subsets of \mathbb{R} .

- (i) \mathbb{R} is open and closed.
- (ii) \emptyset is open and closed.

- (iv) $\{x_1, x_2, \dots, x_n\}$ is closed. (v) $\{\frac{1}{n} \mid n \in \mathbb{N}\}$ is neither open nor closed.
- (iii) [0,1) is neither open nor closed.

Question A.4. Let U_1 and U_2 be open sets in \mathbb{R} . Prove the following.

- (i) $U_1 \cup U_2$ is open.
- (ii) $U_1 \cap U_2$ is open.

Question A.5. Compute $\sup X$ and $\inf X$ (if they exist) for the following sets.

(iii) $\{x \in R \mid x < \frac{1}{x}\}$ (iv) $\{x \in \mathbb{R} \mid \sin \frac{1}{x} = 0\}.$ (i) $(0,1) \cup (2,3]$. (ii) $\left\{\frac{1}{n} \mid n \in \mathbb{N}\right\}$

Question A.6. Let S and T be non-empty bounded subsets of \mathbb{R} . Define $-S = \{-s \mid s \in S\}$ and $S + T = \{s + t \mid s \in S, t \in T\}$. Prove the following.

- (i) $\sup(-X) = -\inf X$.
- (ii) $\sup(S+T) \le \sup S + \sup T$.

B. SUBMITTED QUESTIONS

Question B.1. Let $X = \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \cup \{0\}$. Is X open, closed, both or neither? Justify your answer.

Question B.2. Let $\emptyset \neq S \subseteq T \subseteq \mathbb{R}$ and suppose T is bounded. Prove that

$$\inf T \le \inf S \le \sup S \le \sup T.$$

C. CHALLENGE QUESTIONS

Question C.1. Using the properties of \mathbb{R} given on pages 24 and 26, prove the following. (This exercise is not really important for analysis but it is good for the soul). Let $a, b, c, d \in \mathbb{R}$.

(i) If a + b = 0 then b = -a.

(ii)
$$-(-a) = a$$
.

- (iii) If $a^2 = a$ then $a \in \{0, 1\}$.
- (iv) If $a \leq b$ and $c \leq d$ then $a + c \leq b + d$.

Question C.2. Let $(U_{\alpha})_{\alpha \in A}$ be an indexed family of open sets. Prove or disprove the following.

- (i) $\bigcup_{\alpha \in A} U_{\alpha}$ is open.
- (ii) $\bigcap_{\alpha \in A} U_{\alpha}$ is open.