MTH435 - HOMEWORK 1

Solutions to the questions in Section B should be submitted by the start of class on 09/19/18.

A. Warm-up Questions

Question A.1. Solve the following inequalities.
(i) $x<\frac{1}{x}$.
(iii) $x-1 \leq|x-2|$.
(ii) $|x+1|+|x-2| \leq 2$.
(iv) $\left|x^{2}-2\right|<3$.

Question A.2. Let $a, b \in \mathbb{R}$. Prove the following.
(i) $\max \{a, b\}=\frac{1}{2}(a+b+|a-b|)$.
(ii) $\min \{a, b\}=\frac{1}{2}(a+b-|a-b|)$.
(iii) $\max \{\max \{a, b\}, c\}$.

Question A.3. Prove the following for subsets of \mathbb{R}.
(i) \mathbb{R} is open and closed.
(iv) $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is closed.
(ii) \varnothing is open and closed.
(v) $\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$ is neither open nor closed.
(iii) $[0,1)$ is neither open nor closed.

Question A.4. Let U_{1} and U_{2} be open sets in \mathbb{R}. Prove the following.
(i) $U_{1} \cup U_{2}$ is open.
(ii) $U_{1} \cap U_{2}$ is open.

Question A.5. Compute $\sup X$ and $\inf X$ (if they exist) for the following sets.
(i) $(0,1) \cup(2,3]$.
(iii) $\left\{x \in R \left\lvert\, x<\frac{1}{x}\right.\right\}$
(ii) $\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$
(iv) $\left\{x \in \mathbb{R} \left\lvert\, \sin \frac{1}{x}=0\right.\right\}$.

Question A.6. Let S and T be non-empty bounded subsets of \mathbb{R}. Define $-S=\{-s \mid s \in S\}$ and $S+T=\{s+t \mid s \in S, t \in T\}$. Prove the following.
(i) $\sup (-X)=-\inf X$.
(ii) $\sup (S+T) \leq \sup S+\sup T$.

B. Submitted Questions

Question B.1. Let $X=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\} \cup\{0\}$. Is X open, closed, both or neither? Justify your answer.
Question B.2. Let $\varnothing \neq S \subseteq T \subseteq \mathbb{R}$ and suppose T is bounded. Prove that
$\inf T \leq \inf S \leq \sup S \leq \sup T$.

C. Challenge Questions

Question C.1. Using the properties of \mathbb{R} given on pages 24 and 26 , prove the following. (This exercise is not really important for analysis but it is good for the soul). Let $a, b, c, d \in \mathbb{R}$.
(i) If $a+b=0$ then $b=-a$.
(ii) $-(-a)=a$.
(iii) If $a^{2}=a$ then $a \in\{0,1\}$.
(iv) If $a \leq b$ and $c \leq d$ then $a+c \leq b+d$.

Question C.2. Let $\left(U_{\alpha}\right)_{\alpha \in A}$ be an indexed family of open sets. Prove or disprove the following.
(i) $\bigcup_{\alpha \in A} U_{\alpha}$ is open.
(ii) $\bigcap_{\alpha \in A} U_{\alpha}$ is open.

