## MTH307 - HOMEWORK 8A

No submitted work this week.

## A. Warm-up Questions

Question A.1. Find inverses of the following functions.
(i) $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)=x+2$.
(ii) $f: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R}), f(X)=\mathbb{R}-X$.
(iii) $f: \mathbb{R} \rightarrow(1, \infty), f(x)=2^{x^{3}}+1$.
(iv) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a x+b$ where $a, b \in \mathbb{R}$ and $a \neq 0$.

Question A.2. Decide if the following functions are bijections, and if they are, find a formula for the inverse.
(i) $H: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, H(x, y)=\left(x^{2}-y, x\right)$.
(ii) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(x, y)=(x+y, x-y)$.
(iii) $F: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}, F(m, n)=(m+2 n, 2 m+3 n)$.
(iv) $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, G(x, y)=(3 x y, x)$.

Question A.3. Let $f: X \rightarrow Y$. We say $g: X \rightarrow Y$ is a left inverse of $f$ if $g(f(x))=x$ for all $x \in X$. We say that $h: Y \rightarrow X$ is a right inverse if $f(h(y))=y$ for all $y \in Y$.
(i) Show that $f$ has a left inverse if and only if it is injective.
(ii) Show that $f$ has a right inverse if and only if surjective.
(iii) If $g$ is a left inverse of $f$, is it unique? Prove your answer.
(iv) If $h$ is a right inverse of $f$, is it unique? Prove your answer.

Question A.4. Let $X, Y$ and $Z$ be sets and $f: X \rightarrow Y$. Prove that $f$ is surjective if and only if for all functions $h: Y \rightarrow Z$ and $k: Y \rightarrow Z$, if we have $h \circ f=k \circ f$ then $h=k$.

