No submitted work this week.

A. WARM-UP QUESTIONS

Question A.1. Find inverses of the following functions.

(i) $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x + 2.$

(ii) $f: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R}), f(X) = \mathbb{R} - X.$

- (iii) $f: \mathbb{R} \to (1, \infty), f(x) = 2^{x^3} + 1.$
- (iv) $f: \mathbb{R} \to \mathbb{R}, f(x) = ax + b$ where $a, b \in \mathbb{R}$ and $a \neq 0$.

Question A.2. Decide if the following functions are bijections, and if they are, find a formula for the inverse.

(i) $H: \mathbb{R}^2 \to \mathbb{R}^2, H(x, y) = (x^2 - y, x).$

- (ii) $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (x+y, x-y). (iii) $F: \mathbb{Z}^2 \to \mathbb{Z}^2$, F(m,n) = (m+2n, 2m+3n).
- (iv) $G: \mathbb{R}^2 \to \mathbb{R}^2, G(x, y) = (3xy, x).$

Question A.3. Let $f: X \to Y$. We say $g: X \to Y$ is a left inverse of f if g(f(x)) = x for all $x \in X$. We say that $h: Y \to X$ is a right inverse if f(h(y)) = y for all $y \in Y$.

- (i) Show that f has a left inverse if and only if it is injective.
- (ii) Show that f has a right inverse if and only if surjective.
- (iii) If g is a left inverse of f, is it unique? Prove your answer.
- (iv) If h is a right inverse of f, is it unique? Prove your answer.

Question A.4. Let X, Y and Z be sets and $f: X \to Y$. Prove that f is surjective if and only if for all functions $h: Y \to Z$ and $k: Y \to Z$, if we have $h \circ f = k \circ f$ then h = k.