MTH307-HOMEWORK 8

Solutions to the questions in Section B should be submitted by the start of class on 4/12/18.

A. Warm-up Questions

We use the follwing terminology.

$$
\mathrm{P}=\left\{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} \mid a_{N}, a_{n-1}, \ldots, a_{0} \in \mathbb{R}, n \geq 0\right\}
$$

is the set of all real polynomials. If $A \subseteq \mathbb{R}$, we say that $f: A \rightarrow \mathbb{R}$ is increasing if $x<y$ implies $f(x)<f(y)$.

Question A.1. Compute the domain and range of the following functions and justify your answer.
(i) $f(x)=\frac{x}{x+1}$.
(iv) $f(x, y)=\frac{x+y}{x-y}$.
(ii) $f(x)=x^{2}-4 x-7$.
(v) $f(x)=\frac{a x+b}{c x+d}$ for $a, b, c, d \in \mathbb{R}$.
(iii) $f(x)=\frac{2 x-1}{x+5}$.

Question A.2. Find $f \circ g$ and $g \circ f$ for the following pairs of functions.
(i) $f(x)=\frac{x}{x^{2}+1}$ and $g(x)=2 x-1$.
(ii) $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(x, y)=g(x, y)=\left(x y, x^{3}\right)$.
(iii) $f, g: \mathbb{R}-\{-1\} \rightarrow \mathbb{R}, f(x)=g(x)=\frac{1}{x+1}-1$.

Question A.3. For each of the following functions, decide if they are injective, surjective or bijective and prove your answer.
(i) $f: \mathbb{R}-\{1\} \rightarrow \mathbb{R}-\{1\}, f(x)=\left(\frac{x+1}{x-1}\right)^{3}$.
(ii) $f: \mathcal{P}(\mathbb{Z}) \rightarrow \mathcal{P}(\mathbb{Z}), f(X)=\bar{X}$.
(iii) $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}, f(m, n)=2^{m} 3^{n}$.
(iv) $f: \mathbb{Z} \rightarrow \mathbb{Z}$,

$$
f(n)= \begin{cases}n+3 & \text { if } n \text { is even, } \\ 2(n+1) & \text { if } n \text { is odd. }\end{cases}
$$

(v) $f: \mathbb{R}-\{2\} \rightarrow \mathbb{R}-\{5\}, f(x)=\frac{5 x+1}{x-2}$.
(vi) $F: \mathrm{P} \rightarrow \mathrm{P}, F(p)=p^{\prime}$.
(vii) $F: \mathrm{P} \rightarrow \mathrm{P}, F(p)=p+2 p^{\prime}$.

Question A.4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be increasing. Prove that f is injective.
Question A.5. Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$.
(i) Show that if f and g are injective then $g \circ f$ is injective.
(ii) Show that if $g \circ f$ is injective then f is injective.
(iii) Suppose $g \circ f$ is injective. Must it be true that g is injective? Prove it or provide a counterexample.

B. Submitted Questions

Question B.1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $f(x, y)=\left(x+y, x^{2}\right)$. Decide if f is injective, surjective or bijective and prove your answer.
Question B.2. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be surjective. Prove that $g \circ f$ is surjective.

C. Challenge Questions

Question C.1. Let $L:[0,1] \rightarrow \mathbb{R}, L(x)=4 x(1-x)$ and $T:[0,1] \rightarrow \mathbb{R}$ by

$$
T(x)= \begin{cases}2 x & \text { if } 0 \leq x \leq \frac{1}{2} \\ 2(1-x) & \text { if } \frac{1}{2}<x \leq 1\end{cases}
$$

Let $h:[0,1] \rightarrow[0,1], h(x)=\sin ^{2}\left(\frac{\pi x}{2}\right)$. Show that $L \circ h=h \circ T$.

