MTH307-HOMEWORK 7

Solutions to the questions in Section B should be submitted by the start of class on $4 / 5 / 18$.

A. Warm-up Questions

Question A.1. Compute $\bigcup_{n=1}^{\infty} A_{n}$ and $\bigcap_{n=1}^{\infty} A_{n}$ for the following indexed sets. You don't need to prove your answer.
(i) $A_{n}=\{0,1,2, \ldots, n\}$.
(ii) $A_{n}=\{-n, 0, n\}$.
(iii) $A_{n}=[n, n+1]$.
(iv) $A_{n}=\left(-\frac{1}{n}, \frac{1}{n}\right)$.
(v) $A_{n}=\left(0, \frac{1}{n}\right)$.
(vi) $A_{n}=[-1, n]$ if n is even and $A_{n}=\left[-\frac{1}{n}, 1\right]$ if n is odd.
(vii) $A_{n}=\left\{0,(-1)^{n} n\right\}$.
(viii) $A_{n}=\left\{\frac{1+(-1)^{n}}{n}, \frac{-1-(-1)^{n}}{n}\right\}$.

Question A.2. Compute

$$
\bigcup_{X \in \mathcal{P}(\mathbb{Z})} X \quad \text { and } \quad \bigcap_{X \in \mathcal{P}(\mathbb{Z})} X
$$

Question A.3. For $x \in(0,1]$, define $A_{x}=[0, x]$.
(i) Show that $0 \in A_{x}$ for all x.
(ii) Show that if $y>0$, then $y \notin A_{x}$ for $x=\frac{\sqrt{y}}{2}$.
(iii) Prove that $\bigcap_{x \in(0,1]} A_{x}=\{0\}$.

Question A.4. For each $\alpha \in \mathbb{R}$, define $X_{\alpha}=\left\{(x, \alpha x(x-1)) \in \mathbb{R}^{2} \mid x \in \mathbb{R}\right\}$.
(i) Sketch the sets X_{0}, X_{1}, X_{-1} and X_{2}.
(ii) Show for all $\alpha \in \mathbb{R}$ that $(0,0)$ and $(1,0)$ are in X_{α}. Deduce that $\{(0,0),(1,0)\} \subseteq \bigcap_{\alpha \in \mathbb{R}} X_{\alpha}$.
(iii) Show that $X_{0} \cap X_{1}=\{(1,0),(0,0)\}$ and deduce that $\bigcap_{\alpha \in \mathbb{R}} X_{\alpha} \subseteq\{(0,0),(1,0)\}$.
(iv) Hence deduce that $\bigcap_{\alpha \in \mathbb{R}} X_{\alpha}=\{(0,0),(1,0)\}$.

B. Submitted Questions

Question B.1. Prove that

$$
\bigcap_{x \in \mathbb{R}}\left[1-x^{2}, 2+x^{2}\right]=[1,2]
$$

Question B.2. For each $\alpha \in \mathbb{R}$, define $X_{\alpha}=\left\{\left(x, 2^{\alpha x}\right) \in \mathbb{R}^{2} \mid x \in \mathbb{R}\right\}$. Find $\bigcap_{\alpha \in \mathbb{R}} X_{\alpha}$ and prove your answer.

C. Challenge Questions

Question C.1. For $a, b \in \mathbb{R}^{2}$, define $P_{a, b}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid a x+b y=0\right\}$. Compute $\bigcap_{(a, b) \in \mathbb{R}^{2}} P_{a, b}$ and $\bigcup_{(a, b) \in\left(\mathbb{R}^{2}-\{(0,0)\}\right)} P_{a, b}$.

Question C.2. For $x \in[0,1]$, define

$$
A_{x}=[x, 1] \times\left[0, e^{x}\right] .
$$

Compute $\bigcup_{x \in[0,1]} A_{x}$ and $\bigcap_{x \in[0,1]} A_{x}$.

