MTH307 - HOMEWORK 7

Solutions to the questions in Section B should be submitted by the start of class on 4/5/18.

A. WARM-UP QUESTIONS

Question A.1. Compute $\bigcup_{n=1}^{\infty} A_n$ and $\bigcap_{n=1}^{\infty} A_n$ for the following indexed sets. You don't need to prove your answer.

(i) $A_n = \{0, 1, 2, \dots, n\}.$ (ii) $A_n = \{-n, 0, n\}.$ (iii) $A_n = [n, n+1].$ (iv) $A_n = \left(-\frac{1}{n}, \frac{1}{n}\right).$ (v) $A_n = \left(0, \frac{1}{n}\right).$ (vi) $A_n = [-1, n]$ if n is even and $A_n = \left[-\frac{1}{n}, 1\right]$ if n is odd. (vii) $A_n = \{0, (-1)^n n\}.$ (viii) $A_n = \left\{\frac{1+(-1)^n}{n}, \frac{-1-(-1)^n}{n}\right\}.$

Question A.2. Compute

$$\bigcup_{X \in \mathcal{P}(\mathbb{Z})} X \quad \text{and} \quad \bigcap_{X \in \mathcal{P}(\mathbb{Z})} X$$

Question A.3. For $x \in (0, 1]$, define $A_x = [0, x]$.

- (i) Show that $0 \in A_x$ for all x.
- (ii) Show that if y > 0, then $y \notin A_x$ for $x = \frac{\sqrt{y}}{2}$.
- (iii) Prove that $\bigcap_{x \in (0,1]} A_x = \{0\}.$

Question A.4. For each $\alpha \in \mathbb{R}$, define $X_{\alpha} = \{(x, \alpha x(x-1)) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}.$

- (i) Sketch the sets X_0, X_1, X_{-1} and X_2 .
- (ii) Show for all $\alpha \in \mathbb{R}$ that (0,0) and (1,0) are in X_{α} . Deduce that $\{(0,0), (1,0)\} \subseteq \bigcap_{\alpha \in \mathbb{R}} X_{\alpha}$.
- (iii) Show that $X_0 \cap X_1 = \{(1,0), (0,0)\}$ and deduce that $\bigcap_{\alpha \in \mathbb{R}} X_\alpha \subseteq \{(0,0), (1,0)\}.$
- (iv) Hence deduce that $\bigcap_{\alpha \in \mathbb{R}} X_{\alpha} = \{(0,0), (1,0)\}.$

B. SUBMITTED QUESTIONS

Question B.1. Prove that

$$\bigcap_{x \in \mathbb{R}} [1 - x^2, 2 + x^2] = [1, 2]$$

Question B.2. For each $\alpha \in \mathbb{R}$, define $X_{\alpha} = \{(x, 2^{\alpha x}) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}$. Find $\bigcap_{\alpha \in \mathbb{R}} X_{\alpha}$ and prove your answer.

C. CHALLENGE QUESTIONS

Question C.1. For $a, b \in \mathbb{R}^2$, define $P_{a,b} = \{(x, y, z) \in \mathbb{R}^3 \mid ax + by = 0\}$. Compute $\bigcap_{(a,b)\in\mathbb{R}^2} P_{a,b}$ and $\bigcup_{(a,b)\in(\mathbb{R}^2-\{(0,0)\})} P_{a,b}$.

Question C.2. For $x \in [0, 1]$, define

$$A_x = [x, 1] \times [0, e^x].$$

Compute $\bigcup_{x \in [0,1]} A_x$ and $\bigcap_{x \in [0,1]} A_x$.