MTH307-HOMEWORK 5

Solutions to the questions in Section B should be submitted by the start of class on 3/22/18.

A. Warm-up Questions

Question A.1. Compute the following sets.
(i) $\mathcal{P}(\{a, b\}) \times \mathcal{P}(\{1,2\})$.
(iv) $\mathcal{P}(\mathbb{N} \cap \mathcal{P}(\mathbb{N}))$.
(ii) $\mathcal{P}(\{a, b\} \times\{1,2\})$.
(v) $\{\varnothing\} \cap \mathcal{P}(\{1,2,3\})$.
(iii) $\mathcal{P}(\mathcal{P}\{\varnothing,\{\varnothing\}\})$.
(vi) $\mathcal{P}(\{\mathbb{Z}, \mathbb{Q}\})$.

Question A.2. Let $A=\{2,4,6\}, B=\{1,3,5\}$ and $C=\{2,3,5\}$ with universal set $\mathcal{U}=$ $\{1,2,3,4,5,6\}$. Compute the following.
(i) $\mathcal{P}(A)-\mathcal{P}(C)$.
(v) $\bar{B}-A$.
(ii) $\mathcal{P}(A-C)$.
(vi) $A-(B \cup C)$.
(iii) $\bar{A} \cap C$.
(vii) $(A-B) \cup C$.
(iv) $(A-C) \cup(C-A)$.
(viii) $\mathcal{P}(A \cap C) \times B$.

Question A.3. Let A, B, C and D be subsets of some universal set \mathcal{U}. Prove or disprove the following.
(i) $\overline{\bar{A}}=A$.
(ii) $A \cap \bar{A}=\varnothing$.
(iii) $\overline{A \cap B}=\bar{A} \cup \bar{B}$.
(iv) $A \times \varnothing=\varnothing$.
(v) $(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D)$.
(vi) $(A \times B) \cup(C \times D)=(A \cup C) \times(B \cup D)$.
(vii) If $A \times B=A \times C$ then $B=C$.
(viii) $A \subseteq B$ if and only if $A-B=\varnothing$.
(ix) If $A \neq \varnothing$ then $A \times B \subseteq A \times C$ if and only if $B \subseteq C$.
(x) If $B \neq \varnothing$ and $A \times B \subseteq B \times C$ then $A \subseteq C$.

B. Submitted Questions

Question B.1. Prove or disprove the following for arbitrary sets A, B and C.
(i) $A \times B=B \times A$ if and only if $A=B$.
(ii) $A \times(B-C)=(A \times B)-(A \times C)$.

C. Challenge Questions

Question C.1. It is possible to define ordered pairs by using sets. A definition due to Kuratowski defines

$$
(x, y)=\{\{x\},\{x, y\}\}
$$

Prove that this definition satisfies the condition that $(x, y)=(u, v)$ if and only if $x=u$ and $y=v$. Can you suggest a set-theoretic definition for (x, y, z) ?
Question C.2. Let X be a set. For $A, B \in \mathcal{P}(X)$ define the symmetric difference $A \triangle B=$ $(A-B) \cup(B-A)$. Prove the following for all $A, B, C \in \mathcal{P}(X)$.
(i) $A \triangle B=(A \cup B)-(A \cap B)$
(ii) $A \triangle B=B \triangle A$.
(iii) $A \triangle(B \triangle C)=(A \triangle B) \triangle C$.
(iv) There exists a unique $E \in \mathcal{P}(X)$ such that $A \triangle E=A=E \triangle A$ for all $A \in \mathcal{P}(X)$.
(v) For E in the previous part, show that for each $A \in \mathcal{P}(X)$ there exists a unique $B \in \mathcal{P}(X)$ such that $A \triangle B=E=B \triangle A$.
For those taking MTH316 in the future, this exercise shows that $(\mathcal{P}(X), \triangle)$ forms a (commutative) group.

