MTH307 - HOMEWORK 5

Solutions to the questions in Section B should be submitted by the start of class on 3/22/18.

A. WARM-UP QUESTIONS

Question A.1. Compute the following sets.

(i) $\mathcal{P}(\{a, b\}) \times \mathcal{P}(\{1, 2\}).$	(iv) $\mathcal{P}(\mathbb{N} \cap \mathcal{P}(\mathbb{N})).$
(ii) $\mathcal{P}(\{a, b\} \times \{1, 2\}).$	$(\mathbf{v}) \ \{\varnothing\} \cap \mathcal{P}(\{1,2,3\}).$
(iii) $\mathcal{P}(\mathcal{P}\{\emptyset, \{\emptyset\}\}).$	(vi) $\mathcal{P}(\{\mathbb{Z},\mathbb{Q}\}).$

Question A.2. Let $A = \{2,4,6\}, B = \{1,3,5\}$ and $C = \{2,3,5\}$ with universal set $\mathcal{U} = \{1,2,3,4,5,6\}$. Compute the following.

(i) $\mathcal{P}(A) - \mathcal{P}(C)$.	(v) $\overline{B} - A$.
(ii) $\mathcal{P}(A-C)$.	(vi) $A - (B \cup C)$.
(iii) $\overline{A} \cap C$.	(vii) $(A-B) \cup C$.
(iv) $(A - C) \cup (C - A)$.	(viii) $\mathcal{P}(A \cap C) \times B$.

Question A.3. Let A, B, C and D be subsets of some universal set \mathcal{U} . Prove or disprove the following.

(i) $\overline{A} = A$. (ii) $A \cap \overline{A} = \emptyset$. (iii) $\overline{A \cap B} = \overline{A} \cup \overline{B}$. (iv) $A \times \emptyset = \emptyset$. (v) $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$. (vi) $(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)$. (vii) If $A \times B = A \times C$ then B = C. (viii) $A \subseteq B$ if and only if $A - B = \emptyset$. (ix) If $A \neq \emptyset$ then $A \times B \subseteq A \times C$ if and only if $B \subseteq C$.

(x) If $B \neq \emptyset$ and $A \times B \subseteq B \times C$ then $A \subseteq C$.

B. SUBMITTED QUESTIONS

Question B.1. Prove or disprove the following for arbitrary sets A, B and C.

(i) $A \times B = B \times A$ if and only if A = B.

(ii) $A \times (B - C) = (A \times B) - (A \times C)$.

C. CHALLENGE QUESTIONS

Question C.1. It is possible to define ordered pairs by using sets. A definition due to Kuratowski defines

$$(x,y) = \{\{x\}, \{x,y\}\}.$$

Prove that this definition satisfies the condition that (x, y) = (u, v) if and only if x = u and y = v. Can you suggest a set-theoretic definition for (x, y, z)?

Question C.2. Let X be a set. For $A, B \in \mathcal{P}(X)$ define the symmetric difference $A \bigtriangleup B = (A - B) \cup (B - A)$. Prove the following for all $A, B, C \in \mathcal{P}(X)$.

(i) $A \bigtriangleup B = (A \cup B) - (A \cap B)$

(ii)
$$A \bigtriangleup B = B \bigtriangleup A$$
.

- (iii) $A \bigtriangleup (B \bigtriangleup C) = (A \bigtriangleup B) \bigtriangleup C$.
- (iv) There exists a unique $E \in \mathcal{P}(X)$ such that $A \bigtriangleup E = A = E \bigtriangleup A$ for all $A \in \mathcal{P}(X)$.
- (v) For E in the previous part, show that for each $A \in \mathcal{P}(X)$ there exists a unique $B \in \mathcal{P}(X)$ such that $A \bigtriangleup B = E = B \bigtriangleup A$.

For those taking MTH316 in the future, this exercise shows that $(\mathcal{P}(X), \Delta)$ forms a (commutative) group.