MTH307-HOMEWORK 5

Solutions to the questions in Section B should be submitted by the start of class on 3/22/18.

A. Warm-up Questions

Question A.1. Let F_{n} be the nth Fibonacci number. Prove the following.
(i) For each $n \in \mathbb{N}$, we have $F_{1}+F_{2}+\ldots+F_{n}=F_{n+2}-1$.
(ii) For all $n \in \mathbb{N}$ we have $F_{n+1}^{2}-F_{n+1} F_{n}-F_{n}^{2}=(-1)^{n}$.
(iii) If $a_{1}=1, a_{2}=2$ and $a_{n+2}=\frac{1}{3}\left(2 a_{n}+a_{n+1}\right)$ for all $n \in \mathbb{N}$ then $1 \leq a_{n} \leq 2$ for all n.
(iv) If $a_{1}=2, a_{2}=5$ and $a_{n+2}=2 a_{n}-a_{n+1}$, find a closed formula for a_{n} and prove it by induction. (Hint: compare your sequence to the values of 2^{n-1}.)

Question A.2. Let $A=\{1,\{1,2\},\{2,3\}, 3\}$ and $B=\{\varnothing,\{\varnothing\}\}$. Decide if the following are true.
(i) $\{1.2\} \in A$.
(v) $\{\varnothing\} \in B$.
(ii) $\{1,2\} \subseteq A$.
(vi) $\{\varnothing\} \subseteq B$.
(iii) $\{1,3\} \subseteq A$.
(vii) $\varnothing \in \varnothing$.
(iv) $\varnothing \in B$.

Question A.3. Let A and B be sets. Prove the following.
(i) $A \subseteq A$.
(v) $A \cup A=A$.
(ii) $A \subseteq A \cup B$.
(vi) $A \cap A=A$.
(iii) $A \cap B \subseteq A$.
(vii) $A \cup B=B \cup A$.
(iv) $\varnothing \subseteq A$.
(viii) $A \cap B=B \cap A$.

Question A.4. Prove or disprove the following.
(i) $\{n \in \mathbb{Z}|6| n\} \subseteq\{x \in \mathbb{Z}|2| x\}$.
(iii) $\left\{9^{n} \mid n \in \mathbb{Z}\right\} \subseteq\left\{3^{n} \mid n \in \mathbb{Z}\right\}$
(ii) $\{2 n \mid n \in \mathbb{N}\} \cap\{3 m \mid m \in \mathbb{Z}\} \neq \varnothing$.
(iv) $\left\{9^{n} \mid n \in \mathbb{Q}\right\}=\left\{3^{n} \mid n \in \mathbb{Q}\right\}$.

Question A.5. Let A, B, C and D be sets. Prove or disprove the following.
(i) $A \cup B=A \cup(B-A)$.
(v) If $A \subseteq B \cup C$ and $A \cap B=\varnothing$ then $A \subseteq C$.
(ii) If $A=B-C$ then $B=A \cup C$.
(vi) If $A \subseteq C$ and $B \subseteq D$ then $B-C \subseteq D-A$.
(iii) If $A \subseteq B \cap C$ then $A \subseteq B$ and $A \subseteq C$.
(vii) If $B=A \cup C$ then $A=B-C$.
(iv) $A \cup(B \cup C)=(A \cup B) \cup C$.
(viii) $A-C \subseteq B-C$ if and only if $A \subseteq B$.

B. Submitted Questions

Question B.1. Prove or disprove the following.
(i) If A, B and C are sets then $(A \cup B)-C=(A-C) \cup(B-C)$.
(ii) If A, B and C are sets and $A \subseteq B \cup C$ then $A \subseteq B$ or $A \subseteq C$.

C. Challenge Questions

Question C.1. Prove the following.
(i) $\{2 n \mid n \in \mathbb{Z}\} \cap\{3 n \mid n \in \mathbb{Z}\} \cap\{5 n \mid n \in \mathbb{Z}\}=\{30 n \mid n \in \mathbb{Z}\}$.
(ii) If A and B are sets then $(A-B) \cup(B-A)=(A \cup B)-(A \cap B)$.

Question C.2. A Preview of MTH435. We say that $X \subseteq \mathbb{R}$ is open if for all $x \in X$ there exists $r>0$ such that the interval $\{y \in \mathbb{R} \mid x-r<y<x+r\}=(x-r, x+r) \subseteq X$. We say a set Y is closed if $\mathbb{R}-Y$ is open.
(i) Prove that \mathbb{R} is open and closed.
(ii) Prove that \varnothing is open and closed.
(iii) Prove that $(0,1)$ is open.
(iv) Prove that $\{0\}$ is closed.

