MTH307 - HOMEWORK 5

Solutions to the questions in Section B should be submitted by the start of class on 3/22/18.

A. WARM-UP QUESTIONS

Question A.1. Let F_n be the *n*th Fibonacci number. Prove the following.

- (i) For each $n \in \mathbb{N}$, we have $F_1 + F_2 + \ldots + F_n = F_{n+2} 1$.
- (ii) For all $n \in \mathbb{N}$ we have $F_{n+1}^2 F_{n+1}F_n F_n^2 = (-1)^n$.
- (iii) If $a_1 = 1$, $a_2 = 2$ and $a_{n+2} = \frac{1}{3}(2a_n + a_{n+1})$ for all $n \in \mathbb{N}$ then $1 \le a_n \le 2$ for all n.
- (iv) If $a_1 = 2$, $a_2 = 5$ and $a_{n+2} = 2a_n a_{n+1}$, find a closed formula for a_n and prove it by induction. (Hint: compare your sequence to the values of 2^{n-1} .)

Question A.2. Let $A = \{1, \{1, 2\}, \{2, 3\}, 3\}$ and $B = \{\emptyset, \{\emptyset\}\}$. Decide if the following are true.

(i) $\{1.2\} \in A$.(v) $\{\varnothing\} \in B$.(ii) $\{1,2\} \subseteq A$.(vi) $\{\varnothing\} \subseteq B$.(iii) $\{1,3\} \subseteq A$.(vii) $\emptyset \in \emptyset$.(iv) $\emptyset \in B$.

Question A.3. Let A and B be sets. Prove the following.

(i) $A \subseteq A$.	(v) $A \cup A = A$.
(ii) $A \subseteq A \cup B$.	(vi) $A \cap A = A$.
(iii) $A \cap B \subseteq A$.	(vii) $A \cup B = B \cup A$
(iv) $\varnothing \subseteq A$.	(viii) $A \cap B = B \cap A$

Question A.4. Prove or disprove the following.

(i) $\{n \in \mathbb{Z} \mid 6|n\} \subseteq \{x \in \mathbb{Z} \mid 2|x\}.$ (ii) $\{2n \mid n \in \mathbb{N}\} \cap \{3m \mid m \in \mathbb{Z}\} \neq \emptyset.$ (iii) $\{9^n \mid n \in \mathbb{Q}\} \subseteq \{3^n \mid n \in \mathbb{Q}\}$ (iv) $\{9^n \mid n \in \mathbb{Q}\} = \{3^n \mid n \in \mathbb{Q}\}.$

Question A.5. Let A, B, C and D be sets. Prove or disprove the following.

(i)	$A \cup B = A \cup (B - A).$	(v) If $A \subseteq B \cup C$ and $A \cap B = \emptyset$ then $A \subseteq C$.
(ii)	If $A = B - C$ then $B = A \cup C$.	(vi) If $A \subseteq C$ and $B \subseteq D$ then $B - C \subseteq D - A$
(iii)	If $A \subseteq B \cap C$ then $A \subseteq B$ and $A \subseteq C$.	(vii) If $B = A \cup C$ then $A = B - C$.
(iv)	$A \cup (B \cup C) = (A \cup B) \cup C.$	(viii) $A - C \subseteq B - C$ if and only if $A \subseteq B$.

B. SUBMITTED QUESTIONS

Question B.1. Prove or disprove the following.

- (i) If A, B and C are sets then $(A \cup B) C = (A C) \cup (B C)$.
- (ii) If A, B and C are sets and $A \subseteq B \cup C$ then $A \subseteq B$ or $A \subseteq C$.

C. CHALLENGE QUESTIONS

Question C.1. Prove the following.

- (i) $\{2n \mid n \in \mathbb{Z}\} \cap \{3n \mid n \in \mathbb{Z}\} \cap \{5n \mid n \in \mathbb{Z}\} = \{30n \mid n \in \mathbb{Z}\}.$
- (ii) If A and B are sets then $(A B) \cup (B A) = (A \cup B) (A \cap B)$.

Question C.2. A Preview of MTH435. We say that $X \subseteq \mathbb{R}$ is open if for all $x \in X$ there exists r > 0 such that the interval $\{y \in \mathbb{R} \mid x - r < y < x + r\} = (x - r, x + r) \subseteq X$. We say a set Y is closed if $\mathbb{R} - Y$ is open.

- (i) Prove that \mathbb{R} is open and closed.
- (ii) Prove that \emptyset is open and closed.
- (iii) Prove that (0, 1) is open.
- (iv) Prove that $\{0\}$ is closed.