MTH307 - HOMEWORK 4

Solutions to the questions in Section B should be submitted by the start of class on 3/1/18.

A. WARM-UP QUESTIONS

Question A.1. Prove the following by contradiction.

- (i) There is no integer n which is both odd and even.
- (ii) There are no integers m and n such that 21m + 30n = 1.
- (iii) $\sqrt[3]{2}$ is irrational.
- (iv) If $\pi/2 \le x \le \pi$ then $\sin x \cos x \ge 1$.

Question A.2. Prove the following with the contrapositive.

- (i) Let a, b and c be integers. If a does not divide bc, then a does not divide b.
- (ii) Let $x \in \mathbb{Z}$. If $x^3 1$ is even then x is odd.
- (iii) Let $x, y \in \mathbb{Z}$. Then if x + y is even then x and y have the same parity.
- (iv) Let $x, y \in \mathbb{Z}$. If $x^2(y^2 2y)$ is odd then x and y are odd.

Question A.3. Prove or disprove the following.

- (i) Let a and b be positive integers. Then if $a \mid b$ and $b \mid a$ then a = b.
- (ii) If x and y are irrational then x + y is irrational.
- (iii) If $x \neq 0$ and x is rational and y is irrational then xy is irrational.
- (iv) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(\forall z \in \mathbb{R})[xy = xz].$
- (v) $(\exists y \in \mathbb{R})(\forall x \in \mathbb{R})(\exists z \in \mathbb{R})[xy = xz].$
- (vi) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})[xy = 1].$
- (vii) $(\exists y \in \mathbb{R}) (\forall x \in \mathbb{R}) [xy = 1].$
- (viii) $(\forall x \in \mathbb{Q})(\exists y \in \mathbb{Z})[xy \in \mathbb{Z}].$

Question A.4. Prove the following by induction.

- (i) For all $n \in \mathbb{N}$, $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$. (ii) For all $n \in \mathbb{N}$, $\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$. (iii) For all $n \in \mathbb{N}$, $\sum_{i=1}^{n} (2i-1) = n^2$. (iv) For all $n \ge 5$ are here $n^2 < 2^n$.

- (iv) For all $n \ge 5$ we have $n^2 < 2^n$.
- (v) For all $n \in \mathbb{N}$, we have $8 \mid (3^{2n} 1)$.
- (vi) For all $n \in \mathbb{N}$, we have $3 \mid (n^2 + 5n + 6)$.

B. SUBMITTED QUESTIONS

Question B.1. Prove or disprove the following.

- (i) If $x, y \in \mathbb{Z}$ then $x^2 4y \neq 2$.
- (ii) Let $a, b \in \mathbb{R}$. Then if $a^3 + ab^2 \le b^3 + a^2b$ then $a \le b$.

C. CHALLENGE QUESTIONS

Question C.1. Let $x \in \mathbb{R}$. Prove that $\sqrt{3} + x$ is irrational or $\sqrt{3} - x$ is irrational.

Question C.2. Let $x \in \mathbb{R}$ and suppose that for all $\varepsilon > 0$ we have $|x| < \varepsilon$. Prove that x = 0. Question C.3. Let

$$f(x) = \begin{cases} 7 - 3x & \text{if } x \neq 1\\ 2018 & \text{if } x = 1 \end{cases}$$

Prove that $\lim_{x \to 1} f(x) = 4$.

Question C.4. Prove that if x > -1 and $n \in \mathbb{N}$ then $(1+x)^n \ge 1 + nx$.

Question C.5. Prove for all integers $n \in \mathbb{N}$ that

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}.$$