MTH307 - HOMEWORK 4

Solutions to the questions in Section B should be submitted by the start of class on 3/1/18.

A. Warm-up Questions

Question A.1. Prove the following by contradiction.
(i) There is no integer n which is both odd and even.
(ii) There are no integers m and n such that $21 m+30 n=1$.
(iii) $\sqrt[3]{2}$ is irrational.
(iv) If $\pi / 2 \leq x \leq \pi$ then $\sin x-\cos x \geq 1$.

Question A.2. Prove the following with the contrapositive.
(i) Let a, b and c be integers. If a does not divide $b c$, then a does not divide b.
(ii) Let $x \in \mathbb{Z}$. If $x^{3}-1$ is even then x is odd.
(iii) Let $x, y \in \mathbb{Z}$. Then if $x+y$ is even then x and y have the same parity.
(iv) Let $x, y \in \mathbb{Z}$. If $x^{2}\left(y^{2}-2 y\right)$ is odd then x and y are odd.

Question A.3. Prove or disprove the following.
(i) Let a and b be positive integers. Then if $a \mid b$ and $b \mid a$ then $a=b$.
(ii) If x and y are irrational then $x+y$ is irrational.
(iii) If $x \neq 0$ and x is rational and y is irrational then $x y$ is irrational.
(iv) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(\forall z \in \mathbb{R})[x y=x z]$.
(v) $(\exists y \in \mathbb{R})(\forall x \in \mathbb{R})(\exists z \in \mathbb{R})[x y=x z]$.
(vi) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})[x y=1]$.
(vii) $(\exists y \in \mathbb{R})(\forall x \in \mathbb{R})[x y=1]$.
(viii) $(\forall x \in \mathbb{Q})(\exists y \in \mathbb{Z})[x y \in \mathbb{Z}]$.

Question A.4. Prove the following by induction.
(i) For all $n \in \mathbb{N}, \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.
(ii) For all $n \in \mathbb{N}, \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$.
(iii) For all $n \in \mathbb{N}, \sum_{i=1}^{n=1}(2 i-1)=n^{2}$.
(iv) For all $n \geq 5$ we have $n^{2}<2^{n}$.
(v) For all $n \in \mathbb{N}$, we have $8 \mid\left(3^{2 n}-1\right)$.
(vi) For all $n \in \mathbb{N}$, we have $3 \mid\left(n^{2}+5 n+6\right)$.

B. Submitted Questions

Question B.1. Prove or disprove the following.
(i) If $x, y \in \mathbb{Z}$ then $x^{2}-4 y \neq 2$.
(ii) Let $a, b \in \mathbb{R}$. Then if $a^{3}+a b^{2} \leq b^{3}+a^{2} b$ then $a \leq b$.

C. Challenge Questions

Question C.1. Let $x \in \mathbb{R}$. Prove that $\sqrt{3}+x$ is irrational or $\sqrt{3}-x$ is irrational.
Question C.2. Let $x \in \mathbb{R}$ and suppose that for all $\varepsilon>0$ we have $|x|<\varepsilon$. Prove that $x=0$.
Question C.3. Let

$$
f(x)= \begin{cases}7-3 x & \text { if } x \neq 1 \\ 2018 & \text { if } x=1\end{cases}
$$

Prove that $\lim _{x \rightarrow 1} f(x)=4$.
Question C.4. Prove that if $x>-1$ and $n \in \mathbb{N}$ then $(1+x)^{n} \geq 1+n x$.
Question C.5. Prove for all integers $n \in \mathbb{N}$ that

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{2 n-1}-\frac{1}{2 n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}
$$

