MTH307 - HOMEWORK 3

Solutions to the questions in Section B should be submitted by the start of class on 2/22/18. You may like to remind yourself on the properties of integers and real numbers found on pages 23 and 27 respectively of the textbook.

A. Warm-up Questions

Question A.1. Prove the following.

- (i) If x is odd then $x^2 + 3x + 9$ is odd.
- (ii) If $x \in \mathbb{R}$ then $x^2 > 0$ (Use cases).
- (iii) If $a \mid b$ and $c \mid d$ then $ac \mid bd$.
- (iv) If x < 0 then $x + \frac{1}{x} \le -2$ (Try working backwards). (v) If 0 < a < b then $0 < a^2 < b^2$.
- (vi) If x is odd then x^3 is odd.
- (vii) If $x \in \mathbb{R}$ and $x \neq 0$ then there exists a unique $y \in \mathbb{R}$ such that xy = 1.

Question A.2. Prove or disprove the following.

- (i) Suppose $a, b, c \in \mathbb{Z}$. If $a \mid bc$ then $a \mid b$ or $a \mid c$.
- (ii) Suppose $a, b, c \in \mathbb{Z}$. If $a \mid (b+c)$ then $a \mid b$ or $a \mid c$.
- (iii) If m and n are even then $4 \mid mn$.

B. Submitted Questions

Question B.1. Prove or disprove the following.

- (i) If $x \in \mathbb{Z}$ then $5x^2 + 3x + 7$ is odd.
- (ii) If x > 0 then $x + \frac{1}{x} \ge 2$.

C. Challenge Questions

Question C.1. Prove the following.

- (i) If $n^2 | n$ then n = 1 or n = 0 or n = -1.
- (ii) Suppose $x, y \in \mathbb{R}$. If $x^2 + 5y = y^2 + 5x$ then x = y or x + y = 5. (iii) If $a, b, c \in \mathbb{R}$ then $ax^2 + bx + c = 0$ has a (real) solution u if and only if $b^2 4ac \ge 0$ and $u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$
- (iv) If m is an odd integer, then there exists $k \in \mathbb{Z}$ such that $m^2 = 8k + 1$.