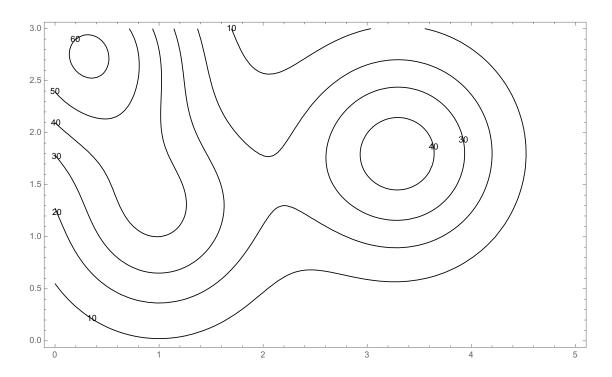
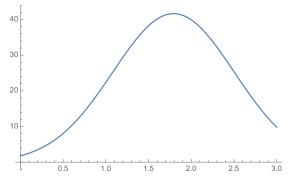
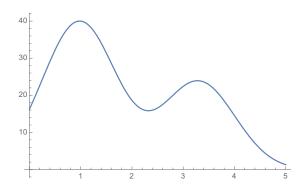
MTH243


CONTOURS

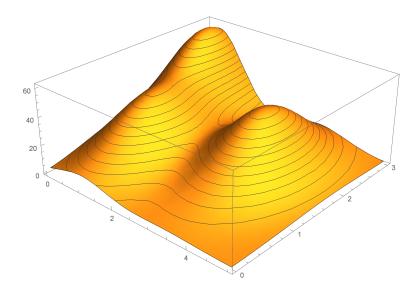
One of our original examples of a function of two variables used isotherms. Isotherms are curves where the temperature is constant – all points on the line have the same temperature. Similarly, on a geographical map, the contours represent points at the same height.



READING CONTOUR PLOTS AND GRAPHS


Example 1. Consider the picture below. Use the contour plot to estimate f(3,2) and f(1,1). Then draw the cross sections for x=3 and y=1.

It seems that good estimates are $f(3,2) \approx 38$ and $f(1,1) \approx 40$. The graph of the cross-section x=3 is



and for y = 1 it is

We can also use contour diagrams to sketch the graph of the function, thus connecting our two ways of visualising functions.

- To get the contour diagram from the graph is easy. Just connect up all the points of the same height on the surface and then project onto the xy-plane. (Contours are just cross-sections with z-fixed).
- To get the graph from the contour plot, we note that each contour represents a set of points taking the same value under f. So we take each contour and raise it to a height equal to the value the function takes on the contour.

