Integral and matrix inequalities associated with graphs

Alexander Sidorenko

sidorenko.ny@gmail.com

Let \mathcal{G} denote the space of bounded symmetric measurable functions on $[0, 1]^2$. For a graph G with vertices $\{v_1, v_2, \ldots, v_n\}$ and edge set E, we define a functional $t_G : \mathcal{G} \to \mathbb{R}$ as

$$t_G(f) = \int_{[0,1]^n} \prod_{\{v_i,v_j\} \in E} f(x_i, x_j) \, dx_1 dx_2 \cdots dx_n \, .$$

We study inequalities of such types as

- majorization: $t_G \leq t_H$;
- positivity: $t_G \ge 0$;
- convexity: $2t_G(f) \leq t_G(f+h) + t_G(f-h)$.