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Abstract
Persistent homology is a powerful notion rooted in topological data analysis which allows for retrieving the essential topological
features of an object. The attention on persistent homology is constantly growing in a large number of application domains,
such as biology and chemistry, astrophysics, automatic classification of images, sensor and social network analysis. Thus, an
increasing number of researchers is now approaching to persistent homology as a tool to be used in their research activity.
At the same time, the literature lacks of tools for introducing beginners to this topic, especially if they do not have a strong
mathematical background in algebraic topology. We propose here two complementary tools which meet this requirement. The
first one is a web-based user-guide equipped with interactive examples to facilitate the comprehension of the notions at the basis
of persistent homology. The second one is an interactive tool, with a specific focus on shape analysis, developed for studying
persistence pairs by visualizing them directly on the input complex.

Keywords: Persistent homology, Topological data analysis, Shape analysis.

Categories and Subject Descriptors (according to ACM CCS): K.3.2 [Computer and Education]: Computer and Information
Science Education—Computer science education

1. Introduction

A data scientist has become a relevant figure in the process of elab-
orating and analyzing data. In the general field of data science,
Topological Data Analysis (TDA) gathered a lot of attention in the
last few years as a complementary framework to more classical ma-
chine learning techniques.

Persistent homology is one of the foundational tools for TDA.
The relevance of persistence homology in several application
domains already led to few books and surveys describing its
theoretical aspects in detail. Worth to be mentioned are the survey
and the book by H. Edelsbrunner and J. Harer [EH08, EH10] and
the books by A. Zomorodian [Zom05] and by R. Ghrist [Ghr14].
In the two works by H. Edelsbrunner and J. Harer, the authors
propose an introduction to persistent homology, and, more gener-
ally, to computational topology, that can be useful for students of
computer science or mathematics with a substantial background
in topology and algorithms. Similarly, in [Zom05], the main task
is to show the significance and utility of topological concepts for
solving problems in computer science. In [Ghr14], the author gives
a personal overview of some basics notions of applied topology.
Persistent homology is viewed from a representation-theoretic
aspect and it is presented as a combination of homology and
sequences. In the survey by N. Otter et al., the pipeline for the
computation of persistent homology is overviewed and a special

emphasis is given to the available software tools [OPT∗15].

Even though these are the most valuable resources for approach-
ing the world of homology and persistent homology, the formalism
required for defining the basic concepts in an algebraic framework
may push away readers lacking such a mathematical background.
Few examples exist that aim at introducing these concepts in an
intuitive way.

The short paper by Weinberger [Wei11] gives a brief and in-
tuitive description of persistent homology presenting it as a way
to handle discrete datasets through mathematical tools. Recently,
a video giving a brief and intuitive description of the basics no-
tions behind persistent homology has been proposed and it is avail-
able on YouTube (https://www.youtube.com/watch?v=
2PSqWBIrn90&feature=youtu.be) [Wri16].

The aim of our work is to provide three different contributions
for a person moving his/her first steps into persistent homology.
As the main resource, we provide an interactive website includ-
ing all the basic notions and the description of the standard algo-
rithm for computing persistent homology. The formal definitions
are matched with intuitive descriptions and interactive examples to
get confidence with the basic concepts. A full description of the
website is provided in Section 4.
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The second tool is a visualization framework for triangulated
surfaces. Provided an input triangulation and a filtration the pro-
gram computes the resulting persistent homology. The persistence
pairs obtained are visualized both in an interactive persistence di-
agram (where each pair is represented as a point in the graph)
and in a 3D scene (where each pair is depicted as a pair of sim-
plices of the surface). By interactively playing with different fil-
tration/triangulations and filtering out persistence pairs from the
graph, a beginner can study the effect of using different input filtra-
tions and the relations between each persistence pair and the origi-
nal data. This tool is described in Section 5.

The third contribution is included in this paper. In Section 3,
we describe the history of persistent homology reviewing the pre-
liminary works that brought to the definition of the theory as it is
used nowadays. Moreover, we provide an overview of the state-of-
the-art methods. This last contribution is intended for students and
researchers that gained some confidence on the basics and want to
study in deep the argument.

2. Background notions

In this section, we introduce the background notions at the basis of
our work, namely simplicial complexes, simplicial and persistent
homology.

2.1. Simplicial complexes

A classical way to represent discretized objects is through simpli-
cial complexes, a collection of well-glued bricks called simplices.
Formally, a k-simplex σ is the convex hull of k + 1 affinely inde-
pendent points. A 0-simplex is a single point, a 1-simplex an edge,
a 2-simplex a triangle, a 3-simplex a tetrahedron, and so on. Given
a k-simplex σ, the dimension of σ is defined to be k and denoted
as dim(σ). Any simplex which is the convex hull of a non-empty
subset of the points generating σ is called a face of σ. A simplicial
complex Σ is a finite set of simplices which satisfies the gluing con-
ditions requiring that each face of a simplex in Σ belongs to Σ, and
each non-empty intersection of any two simplices in Σ is a face of
both. We define the dimension of a simplicial complex Σ, denoted
as dim(Σ), as the largest dimension of its simplices.

2.2. Homology and persistent homology

Simplicial homology is a powerful tool in shape analysis, providing
invariants for shape description and characterization.
Given a simplicial complex Σ, it is possible to define the chain com-
plex associated with Σ, denoted as C∗(Σ) := (Ck(Σ),∂k)k∈Z, where
Ck(Σ) is the free Abelian group generated by the k-simplices of
Σ, and ∂k : Ck(Σ)→ Ck−1(Σ) is a homomorphism, called bound-
ary map, which encodes the boundary relations between the k-
simplices and the (k− 1)-simplices of Σ such that ∂

2 = 0. We
denote as Zk(Σ) := ker(∂k) the group of the k-cycles of Σ and as
Bk(Σ) := Im(∂k+1) the group of the k-boundaries of Σ. Then, we
define the kth homology group of Σ as

Hk(Σ) := Hk(C∗(Σ)) =
Zk(Σ)

Bk(Σ)

Figure 1: A filtration of a simplicial complex Σ (image from
[Bub15]). The filtration is obtained starting from a set of points
and increasing the radius of the balls centered in each point. A k-
simplex generated by vertices v0, . . . ,vk is created when every two
balls centered in v0, . . . ,vk have a non-null intersection.

Roughly speaking, homology groups reveal the presence of "holes"
in a shape. For each degree k, the kth Betti number βk is defined as
the rank of Hk(Σ) and it counts the number of independent k-cycles
which do not represent the boundary of any collection of simplices
of Σ. In dimension 0, β0 coincides with the number of connected
components of the complex, in dimension 1, its tunnels and its
holes, in dimension 2, the shells surrounding voids or cavities, and
so on.

Persistent homology [EH10] is an important tool in topologi-
cal shape analysis, which aims at overcoming intrinsic limitations
of classical homology by allowing for a multi-scale approach to
shape description. In a nutshell, persistent homology describes the
changes in homology that occur to an object which evolves with
respect to a parameter. Given a simplicial complex Σ, a filtration of
Σ is a finite sequence of subcomplexes Σ

f := {Σp |0 ≤ p ≤ m} of
Σ such that ∅= Σ

0 ⊆ Σ
1 ⊆ ·· · ⊆ Σ

m = Σ.
For p,q ∈ {0, . . .m} such that p ≤ q, the (p,q)-persistent k-
homology group H p,q

k (Σ) of Σ consists of the k-cycles included
from Ck(Σ

p) into Ck(Σ
q) modulo boundaries. Formally, it can be

defined as

H p,q
k (Σ f ) := Im(ip,q

k )

where ip,q
k denotes the linear map between Hk(Σ

p) and Hk(Σ
q) in-

duced by the inclusion of complexes between Σ
p and Σ

q.
As already mentioned, persistent homology provides more infor-
mation about a shape than classical homology. While homology
captures cycles in a shape by factoring out the boundary cycles,
persistent homology allows for the retrieval of cycles that are non-
boundary elements in a certain step of the filtration and that will
turn into boundaries in some subsequent step. The persistence of a
cycle during the filtration gives quantitative information about the
relevance of the cycle itself for the shape.

In Figure 1, an example of filtration for a simplicial complex Σ

is shown. Persistent homology allows for detecting the changes in
the homology of Σ. For instance, the birth and the death of 1-cycles
occurring during the filtration of Σ.

Both classical and persistent homology can be defined in terms
of any Abelian group as coefficient group. The most complete ho-
mological information is retrieved by choosing Z as coefficient
group. In spite of this, for simplicial complexes embeddable in R3,
the information obtained by considering coefficients in Z or in Z2
is the same (see [AH35], Chapter X). So, in practical cases, classi-
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cal and persistent homology is usually considered with coefficients
in Z2.

3. A short history of persistent homology

In this section, we give a short overview of the evolution of per-
sistent homology considering the techniques used to visualize the
information recoverable thanks to persistent homology as well as
the approaches for computing it.

Defining persistent homology. The concept of persistence sprang
independently from different perspectives between the 90’s and the
beginning of the new millennium. The roots of persistence are to
be found in the context of size theory [Fro90]. Size theory aims at
detecting (dis)similarities between shapes. Shapes are represented
by pairs including a topological space together with a continuous
real-valued function defined on it. In 1992, P. Frosini developed the
notion of size function [Fro92]. According to the continuous func-
tion values, the topological space is filtered by sub-level sets. The
size function counts how many connected components are main-
tained from one sub-level set to another. As the reader may notice,
this is precisely the core idea in persistent homology, though lim-
ited at that time to the analysis of the degree 0 of homology.

In 1999, exploratory works on persistent homology (not yet de-
fined with this name) pointed towards the area of shape recognition.
V. Robins [Rob99] applied α-shape approximations to the study of
homological features of fractal sets. Starting from a sampled fractal
set, an increasing sequence of discrete spaces called α-shape was
built to approximate the original shape. The focus was on analyz-
ing the history of births of homological features in the final object.
The persistent Betti numbers were introduced to count, for any in-
termediate complex, how many homological features contribute to
the homology of the final object.

While the latter work contained the essence of persistent homol-
ogy, the well-established definition associated with a general in-
creasing sequence of simplicial complexes and defined for any or-
dered pair of filtration parameters p and q is due to H. Edelsbrun-
ner, D. Letcher, and A. Zomorodian [ELZ02]. At the beginning, the
definition was limited to complexes embedded in the 3-dimensional
Euclidean space. Afterwards, it reveals itself as valid in a more gen-
eral context. The notion of persistent Betti numbers took the current
form to indicate, in general for any two ordered parameters p≤ q,
the number of homology classes survived from p to q.

Visualizing persistent homology. Due to its relevance and
effectiveness in topological data analysis, persistence homology
has been the object of in-depth studies and investigations. Funda-
mental contributions in the area focus on methods for effectively
interpreting and visualizing the topological features detected by
the persistent homology.
The notion of persistence pair has met this need. Intuitively, each
persistence pair represents a non-null contribution in persistent
homology. Given a filtration {Σp |0 ≤ p ≤ m} of a simplicial
complex Σ, a persistence pair (p,q) is represented as an element
in {0, . . . ,m} × ({0, . . . ,m} ∪∞) such that p < q. Specifically,
if both p and q are natural numbers, the pair (p,q) represents a
non-trivial homology class that is born at step p of the filtration

and dies at step q. In this case, the value q− p corresponds to
the lifespan of that homology class and allows for discriminating
between relevant and negligible classes. Differently, a pair (p,∞)
reflects the existence of a non-trivial homology class that is born at
step p and persists along all the following filtration steps.
Due to the intuitive meaning of persistence pairs, much research
has focused on their properties and visualization. A crucial step
has been made by G. Carlsson and A. Zomorodian [CZ05].
They investigated the algebraic nature of persistent homology by
introducing the persistence module and proved a classification
result. Thanks to the structure theorem for graded modules over
PID (i.e., a principal ideal domain), they proved that the knowledge
of all persistence pairs of a filtration completely characterizes the
persistence module. So, filtrations having different persistence
pairs necessarily have non-isomorphic persistence modules.

As far as visualization is concerned, the literature has indicated
many possibilities along the years which find preferences accord-
ing to the applicative purposes. The notion of persistence pair has
a counterpart in size theory. Any size function, which corresponds
to a persistent Betti number, is completely described by a discrete
number of its values called corner points, for q <∞, and corner
lines, for essential classes [FL01].
At the time in which persistent homology has been intro-
duced [ELZ02], authors visualized persistence pairs either as
half-open intervals [p,q) on the real line or triangles in the index-
persistence plane spanned by (p,0), (q,0) and (p,q− p), where
the index is a total ordering on the simplices in the domain and
persistence is the space of the differences q− p. By intervals on
the real line, it is very intuitive to compare lifetimes of the classes.
By triangles, it is more intuitive to relate persistent Betti numbers
to persistence pairs. Indeed, for any pair in the persistence-index
plane, the persistent Betti number equals the number of triangles
containing the pair.
These two main ideas have led to the most common equivalent
ways to visualize persistence pairs. The interval approach has led
to the current notion of barcode, widely surveyed in [Ghr08] and
first called by this name in [CZCG05]. Properly, a barcode is a
graphical representation of the persistent homology of a filtered
simplicial complex as a collection of horizontal line segments
obtained by considering each persistence pair (p,q) as an interval.
The triangle approach and the size function representation by
corner points has led to the most adopted visualization of persis-
tence pairs called persistence diagrams [EH08]. The persistence
diagram of a given dimension k is just the representation of points
in the Cartesian plane of the persistence pairs (p,q) representing
a homology class of dimension k. In such a representation, all the
homology classes lie above the diagonal of the first quadrant and
the lifespan of a class (p,q) is measured in terms of the distance
of the point (p,q) from the diagonal in the ∞-norm. Differently,
persistent homology classes (p,∞) are represented in the upper
part of the first quadrant. Each persistence pair indicates either a
triangle, spanned by (p,q), (p, p) and (q,q) if q <∞, or an open
area, limited by the vertical line in (p,0) and the diagonal. For any
other point in the plane, its corresponding persistent Betti number
is the number of triangles or open areas including it.
Recently, a novel representation for the visualization of persistence
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pairs, called persistence landscape, has been introduced [Bub15].
A persistence landscape is a representation halfway between the
persistence diagram and the barcode. It can be roughly considered
as a horizontal version of the persistence diagram and it has
been studied for better combining topological data analysis with
statistics and machine learning. Figure 2 displays the three repre-
sentations here described for the visualization of the persistence
pairs.

The relevance of persistence pairs as descriptors is confirmed
by stability results with respect to two main notions of pseudo-
distances between persistence diagrams. The first one is the match-
ing distance. It has been first introduced in [LF97] within the
context of size functions, then defined for persistent diagrams in
[CSEH07] under the name of bottleneck distance to underline the
relation with a classical graph-theory notion of distance. A match-
ing is a bijective correspondence between pairs in two diagrams. A
pair can either be matched to another pair or to a diagonal point in
order to allow for comparisons of diagrams of different cardinal-
ity. Any two matched pairs imply a cost according to their distance
in the∞-norm. The general cost of the matching is the maximum
cost of any two pairs. The infimum of all costs as the matching
varies among all possible ones is taken as the matching distance
between the two diagrams. In size theory, we have a continuous
function defined on the shape. The matching distance is stable with
respect to perturbations of the original function with respect to the
l∞-norm [DFL10].
In [CSEH07], authors proved a crucial stability result for the bottle-
neck distance under small perturbations of the filtration assuming
the filtering function to be tame, which includes Morse functions
and PL functions.
In the same paper, as a second possibility to compare persistence
diagrams, the Hausdorff distance is considered and proved to be
stable. Informally, two sets are close in the Hausdorff distance
if every point of either set is close to some point of the other
set. In other words, the Hausdorff distance is the greatest of all
the distances from a point in one set to the closest point in the
other set. The Hausdorff distance provides a lower bound for the
matching/bottleneck distance. This latter is currently the most used,
though the former is easier to compute. Stability of persistence
diagrams has also an algebraic counterpart due to Chazal et al.
[CCSG∗09], where the bottleneck distance is proven to be stable
with respect to algebraic perturbations of the persistence module
called interleavings, without any explicit reference to any filtering
function.

Computing persistent homology. Together with the notion of
persistent homology also the computation of the homological in-
formation has evolved over the years. At the beginning, persistent
homology has been computed by extending techniques developed
for retrieving homology. Nowadays, the spread of persistent ho-
mology has led to a dual situation. The classical way to retrieve
the homology with coefficients in a PID of a simplicial complex
Σ is based on a matrix reduction, the Smith Normal Form (SNF)
reduction, applied to the matrices encoding the boundary maps
of Σ [Mun84, Ago05]. Similarly, persistent homology with coef-
ficients in a PID of a filtered simplicial complex can be retrieved

by using a matrix-based reduction [ZC05]. The specialization to
coefficients in a field of this algorithm is usually denoted as stan-
dard algorithm and, in practical cases, it has a linear complexity in
the number of the simplices of the complex. Although the methods
based on a matrix reduction are theoretically valid in any dimen-
sion, their worst-case complexity is super-cubical in the number of
simplices of the complex.

Improvements have been proposed since then. They can be sub-
divided based on the strategy they adopt, namely:

• direct optimizations [MMS11, CK13, CK11, DMV11, BM14],
• distributed approaches [BCA∗11, LZ14, LSV11, MNV13,

BKR14a, BKR14b],
• methods based on annotations [DFW14, BDM13].

We refer as direct optimizations all those methods that improve
the efficiency of the standard algorithm. Differently, distributed ap-
proaches efficiently retrieve the homological information of a com-
plex through parallel and distributed computations. Recently, per-
sistent homology is efficiently computed using annotations which
are vectors associated with each simplex of the complex encoding
in a compact way the homology class of the simplex itself.
A different and fundamental subfield of methods studied for persis-
tent homology are the so-called, coarsening or pruning approaches
[MB09, MW10, BDMZ12, DHKS13, Zom10, RWS11, HMMN14,
FID14,DW14]. These methods reduce the size of the input complex
without changing its homological information by applying iterative
simplifications.

4. Interactive user-guide to persistent homology

In order to meet the increasing attention on persistent homology
by a wider and wider class of researchers, we have created a web-
based user-guide on the same topic. The main contributions of this
tool are:

• an intuitive and self-contained introduction to persistent homol-
ogy;
• an introduction to the standard algorithm for computing persis-

tent homology;
• an overview of the persistent homology state of the art to orient

beginners.

For each of these contributions, our work addresses a twofold
task. On the one hand, we present an intuitive introductive guide
enriched with interactive examples in order to be comprehensible
for a large class of users. On the other hand, the theoretical con-
sistency of the introduced notions and algorithms is still preserved.
Moreover, mulitple references and links in the text redirect to rel-
evant contents and allow to create a complete guide on persistent
homology from its elementary definitions to its computation and
applications. According to this double task, the proposed guide re-
veals to be a useful tool for different kinds of users. It can be a
powerful tool for courses on the topic, a step-by-step handbook for
beginners and a solid starting point for researchers coming from
different research fields.

For purposes of clarity, the web page alternates white to col-
ored backgrounds. White corresponds to the descriptive notions,
including formal definitions. Blue colored boxes correspond to
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(a) (b) (c)

Figure 2: Various visualizations of the persistence pairs in degree 1 of the filtration depicted in Figure 1: persistence diagram (a), barcode
(b) and persistence landscape (c) (images from [Bub15]).

interactive examples and useful comments. Red colored boxes
indicate involved notions or links to detailed studies. The idea
is to make the exposure lighter in the graphics and to combine
the mathematical formalism to the graphical intuition. The same
complex is carried along all the examples. We have chosen a
simplicial complex (see Figure 3(a)) combining both a small size
(crucial for the step-by-step presentation of the standard algorithm)
and interesting persistence features (such as essential classes and
non-trivial 0 and 1-degree homologies). This choice is supposed to
help the reader in relating the different definitions with minimum
effort. Moreover, the interactivity allows the reader to briefly focus
on the examples without long breaks in the reading and it helps
in optimizing the web page space required by the examples. This
particularly impacts the step-by-step reduction of the 23x23 matrix
in the algorithm part, otherwise too heavy (see Figure 3(c)).

Introducing background notions for persistent homology. The
core feature of our guide is to be self-contained and minimal with
respect to the formal definitions introduced. We made the explicit
choice of simplifying the exposition for four aspects.

(1) We assume our simplicial complex to be finite and embedded
in an Euclidean space. Thus, there is a precise choice not to define
the simplicial complex in an abstract way. This makes it clear
from the beginning the difference between the notion of (intrinsic)
dimension d of a complex and that of the embedding space
n. Newcomers interested in relating standard filtrations in the
literature such as the α-shapes and the Vietoris-Rips complexes
may take advantage of this approach. In addition, our choice is
to denote the faces of dimension k− 1 of a k-simplex σ simply
by σ̂i to indicate directly the removal of vertex of index i. This
induces differences, that we believe can help the non-expert reader,
with respect to the usual notation in the definition of the boundary
maps at the chain complex level and in the definition of a filtering
function.
(2) The formal definition of a chain complex restricted to coeffi-
cients over the field Z2 avoids the need of orienting the simplices
and considering complicated chains. The same restriction allows
also for introducing an algebraic notation while preserving a
familiar domain for computer scientists. The notion of chain is a
crucial one for the introduction of homology and many examples

are provided to visualize directly cycles and boundaries. With
respect to the simplicial homology, the choice of considering
Z2 coefficients is not restrictive as long as we consider simpli-
cial complexes embedded in a 3-dimensional Euclidean space.
Moreover, it allows for introducing the homology as a vector
space, instead of the most general definition of homology as an
Abelian group. Before the actual definition, simplicial homology is
motivated by means of the informal notion of k-hole, which is sup-
posed to help understanding the interpretation of the Betti numbers.

(3) A single definition of persistence homology is mentioned.
Being the most well-established definition of persistent homology
in the scientific community, we define it with respect to any pair
of ordered parameters p and q as the image of the respective
induced linear map of homologies. No other equivalent or related
definitions, such as the equivalent one by Edelsbrunner et al.
in [ELZ02] and that of persistence module introduced in [CZ05],
are mentioned. We first introduce the notion of filtering function
and we induce the filtration afterwards. Our motivation is twofold.
On the one hand, this is the standard setting when working with
shape descriptors. On the other hand, this approach is general
since any finite sequence of nested simplicial complexes might
come from such a filtering function. In particular, we stress the
importance of each sub-level set being a subcomplex, which might
be tricky in the first approach to persistence. Other metric-based
constructions crucial for applications to point cloud data coming
from the topological data analysis context are mentioned as
variations of that approach in the final part.

(4) Only the persistence diagram is presented as the persistent
homology descriptor. The barcode is mentioned for completeness
with suitable references together with the landscapes descriptor.
Moreover, in order to provide a definition for the persistence di-
agram untangled from the structure theorem, we introduce persis-
tent classes h explaining how to associate a birth parameter ph and
a death parameter qh.

Describing the standard algorithm. A main part of the web-
based guide is devoted to the description of the standard algorithm.
Among all the possible algorithms proposed for computing per-
sistent homology, we choose the latter by considering Z2 as the
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(a) (b)

(c) (d)

Figure 3: Few interactive examples coming with the web-based guide. While reading, the user can trigger events to get a visual representation
of the content of the text. The events can be triggered moving the cursor over text (a), using a slider (b), clicking on images (c) or interacting
with the figures (d).

coefficient ring. Our choice is due to various reasons. First of
all, the standard algorithm is considered in the literature as the
reference algorithm for the computation of persistent homology.
Further, the choice of considering Z2 as the coefficient group
allows for simplifying the description of the algorithm and enhanc-
ing the understanding of its steps. Finally, we describe the version
of the standard algorithm proposed in [EH10] rather than the more
general one introduced in [ZC05] since the use of polynomials can
be too tough for non-expert users.

Our presentation describes the entire pipeline for computing
persistent homology, from the input filtered complex, through the
step-by-step analysis of the algorithm, to the representation and
the interpretation of the obtained persistence pairs.

In the section devoted to the construction of the boundary matrix
M associated with a filtered simplicial complex Σ

f , the user has
the possibility of better understanding the relationship between
the original filtering function f and the indexing of the matrix
M. On the website, we explain how such indexing is equivalent
to an injective function f ′ defined on all the simplices of Σ. With
a slider, we allow for updating the value of the functions f and
f ′ displaying the corresponding simplicial complexes changing

accordingly (see Figure 3(b)).

The standard algorithm is described showing both a pseudo-code
description and a step-by-step example (see Figure 3(c)). The
example provided allows a user to iterate along the various steps
of the algorithm applied to the filtered simplicial complex.

Another crucial point discussed in this paper is the interpretation
and visualization of the results. Discriminating between the
persistence pairs of Σ with respect to f and to f ′ is a step often
overlooked in the literature. For a better understanding, our guide
treats each of these cases separately. After having described how
the persistence pairs can be quickly retrieved by displaying the
pseudocode of the corresponding algorithm, we define the notion
of positive ad negative simplices and we give an interactive way
to visualize them. In the proposed examples, one for each filtering
function f and f ′, the user can study the information provided by
each persistence pair projected directly on the original simplicial
complex. Each example depicts, on the left, the graph with a blue
point for each simplex pair leading to a non-trivial persistence pair.
Selecting a point on the graph, a simplicial complex is rendered at
the filtration step in which the persistence pair is created. The two
simplices involved in the pair are indicated with a green sphere for
the simplex that created the homology class, and a red sphere, for
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the one that killed it (see Figure 3(d)).

By looking at the distribution of the points on the graph, one
can get a visual representation of another fundamental information
encoded in the persistence pairs, the lifespan. The more a point
is depicted far away from the diagonal, the longer the homology
class it represents lived in the filtration. In the example, we are
also showing the homology classes that never die, depicted with
cubes. In the case of the filtering function f ′, the two blue cubes
represent the two connected components that survive at the end of
the filtration while the green cube corresponds to the 1-cycle.
The proposed graphical visualization of the information returned
by the computation of persistent homology does not properly
coincide with persistence diagrams. In fact, for the sake of sim-
plicity, we choose to adopt a slightly different representation that
can be much more readable than the persistence diagrams while
encoding the same information. First, the proposed representation
includes a single scatterplot graph the entire information given by
the persistence diagrams of all the homology degrees. Further-
more, differently from the persistence diagram, the introduced
visualization represents persistence pairs with components given
by f ′ rather than f , thus allowing to represent as distinct points
persistence pairs with multiplicity greater than 1.

After the first steps. The last page of our guide wants to provide
material for a reader interested in theoretical or practical advanced
details. A first discussion concerns the different types of datasets
on which persistent homology can be computed and their connec-
tions to specific classes of application domains. Depending from
the context, the input data can be discretized through a scalar func-
tion defined on a set of points, a point cloud, or a simplicial com-
plex with a filtration value associated with each of its simplices.
Especially for non-expert users, this variety can cause misunder-
standings making him/her think of being in front of different tools
rather than of a unique powerful theory applied to several contexts.
For each of the recognized classes, the guide provides a short de-
scription and links to relevant dataset repositories also addressing
the user to the corresponding application fields.
In order to provide a global point of view on persistent homology
computation, the last part of the guide is devoted to the algorith-
mic approaches for computing persistent homology different from
the standard algorithm. The guide provides a classification of such
approaches according to the adopted strategies giving, for each of
them, the suitable references. Specifically, we can subdivide these
methods into direct optimizations of the standard algorithm, dis-
tributed approaches, methods based on annotations, and coarsen-
ing and pruning approaches. Finally, we collect and classify the
software tools for computing persistence homology that have been
distributed in the public domain.

5. A Web-GL interface for analyzing persistence pairs

In this section, we describe the tool developed for studying and
visualizing persistence pairs on a triangulated surface.

The tool is composed of two distinct packages. The first one

Algorithm 1 computeBoundaryMatrix(Σ, f )
Input: Σ simplicial complex
Input: f : Σ−→ R filtering function
Output: M boundary matrix

1: M.setSize(|Σ|)
2: f’ = computeIndexing(Σ, f )
3: Σ

f ′ = sortSimplices(Σ,f’)
4: for all σ ∈ Σ

f ′ do
5: if bd(σ) == ∅ then
6: M.pushCol();
7: else
8: B = ∅;
9: for all τ ∈ bd(σ) do

10: B.push(f’(τ));
11: M.pushCol(B);
12: return M

takes a filtration as input (described as triangulation Σ and a func-
tion defined on the vertices of Σ) and it computes the persistence
pairs a format suitable for the second package, the visualization
interface.

5.1. Computing persistent homology

The input expected from the software tool is a triangulated surface
(currently only .ply and .off formats are supported). The filtering
function, provided on a separate file, is defined on the vertices of
the complex and extended to all the simplices. Let f : Σ0 −→ R be
the filtering function defined on the vertices Σ0 of Σ, f is extended
to all the simplices σ ∈ Σ as f (σ) = maxv∈σ f (v).

Once the filtering function has been extended, the matrix M rep-
resenting the boundary relations among the simplices of Σ is com-
puted using Algorithm 1. Starting from the input filtering function,
an indexing f ′ is defined on the simplices of Σ (row 2). The index i
of a simplex represents the position of its corresponding column in
M. The index values grow with the filtration so, if f (σ) < f (τ) or
σ is a proper face of τ, then f ′(σ) < f ′(τ). Ties are solved in such
a way that each simplex has a lower index of the simplices on its
boundary. Once f ′ has been computed, the simplices are processed
in order according to it. For each k-simplex σ we extract its imme-
diate boundary (i.e., its faces of dimension k−1) using the function
bd. If σ is a vertex then we insert an empty column in M (row 11).
Otherwise, we initialize a column B by inserting the values of f ′

for each simplex on the boundary bd(σ).

The next step is computing persistence homology. In our im-
plementation, we are using the standard algorithm described in
[ELZ02] provided in the PHAT library [BKR13]. Once persistent
homology has been computed, the persistence pairs are extracted
using a built-in function still provided in the PHAT library. The
output files describe the persistence pairs computed in a suitable
format to be read by the visualization tool. For clarity, we postpone
the description of these files to the next section.

c© 2016 The Author(s)
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Figure 4: Main interface of the visualization tool.

5.2. Visualizing persistent pairs.

Figure 4 shows the main view offered to the user. The 3D scene is
implemented using the THREEJS library [3js], a Javascript library
based on WebGL. THREEJS is used here to create the 3D scene
for the triangulated surface. Persistence pairs are here depicted as
spheres colored according to the simplex dimension (vertices-blue,
edges-green, triangles-red). Each sphere is drawn at the barycenter
of the corresponding simplex. Interactions with the 3D scene are
limited to an orbiting camera allowing us to change the point of
view.

The scatter plot used for representing the persistence pairs is im-
plemented using the Plotly library [plo15]. Plotly is a high-level
charting library built on top of d3js. It provides a series of interac-
tive charts and an API for different programming languages includ-
ing Python, Javascript and R.

Using Plotly, we can easily develop interactive charts. Opera-
tions that can be performed on the graph vary from zooming or
panning to selecting a subset of data. The programmer is only re-
sponsible for setting up the desired event listener for each interac-
tion.

Our tool takes two files as input. The first one is the file contain-
ing the triangulation (temporarily, only the ASCII .ply format is
supported). The second one is a .json file listing all the persistence
pairs computed by the algorithm described in Subsection 5.1. Pairs
are organized based on the homology type that is killed from each
of them. We recall that a vertex-edge pair represents the "destruc-
tion" of a 0-cycle while edge-triangle pairs represent 1-cycles filled
in during the filtration.

Each pair is then associated with eight values representing:

• the coordinates of the vertex in the scatterplot (2 values),
• the coordinates in the 3D scene of the barycenter of the first sim-

plex (3 values),
• the coordinates in the 3D scene of the barycenter of the second

simplex (3 values).

The scatter plot represents the dashboard for interacting with the
visualization tool.

Likewise in the scatterplot shown in the user-guide, the graph

showing the persistence pairs is not a proper persistence diagram.
Here vertex-edge and edge-triangle pairs are depicted together. The
former are depicted as blue dots while the seconds as red dots. Also,
each point is depicted at coordinates (i, j) where i and j are the in-
dices in the boundary matrix M of the two simplices involved. In
other words, the coordinates are maintained accordingly to the in-
jective function f ′. This way, each point on the graph always cor-
responds to a single pair of simplices (i.e., the graph is no longer a
multiset) and the user’s interactions result more intuitive.

We recognize two types of interactions called, scene oblivious
and scene modifying. Scene oblivious interactions provoke updates
on the scatter plot only. Through such operations, we can zoom in
and zoom out on the scatter plot or pan the portion of the graph
rendered.

Scene modifying interactions change the number of critical pairs
visualized in the 3D view and are the main tool for the interactive
analysis. Two different tools (box or lazo selection tools) can be
used for selecting a subset of points from the graph. Pairs excluded
from the selection are also removed from the 3D view of the scene.
An example of the two selection tools is shown in Figure 5. Moving
the mouse cursor over a point in the scatterplot will automatically
remove all the persistence pairs from the 3D view but the selected
pair. See Figure 6 for an illustrative example.

6. Concluding remarks

In this paper, we have presented a new approach for spreading per-
sistent homology as a practical tool. The interactive guide can be
found https://github.com/IuricichF/ICT. The source
code of the visualization tool can be found https://github.
com/IuricichF/VisualizePH.

We are planning to expand the web-based user-guide includ-
ing many other concepts rooted in computational topology such
as Morse theory, Reeb Graphs, discrete Morse theory by Forman
and so on. Our long-term goal is to realize a shared framework
where researchers can participate in building user-friendly interac-
tive guides to be used for courses.

In this direction, also the visualization tool could become ex-
tremely powerful. We are planning to extend the number of struc-
tures with other representations commonly used in computational
topology. We think that showing the relations between the many
topological structures (such as Morse cells, Reeb graphs, persis-
tence pairs etc.) with such an interactive tool would enhance the
learning process of a beginner substantially.
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[MMS11] MILOSAVLJEVIĆ N., MOROZOV D., SKRABA P.: Zigzag per-
sistent homology in matrix multiplication time. In Proceedings of the
twenty-seventh Annual Symposium on Computational Geometry (2011),
ACM, pp. 216–225. doi:10.1145/1998196.1998229. 4

[MNV13] MURTY N. A., NATARAJAN V., VADHIYAR S.: Efficient ho-
mology computations on multicore and manycore systems. In 20th An-
nual International Conference on High Performance Computing (Dec.
2013), IEEE, pp. 333–342. doi:10.1109/HiPC.2013.6799139.
4

[Mun84] MUNKRES J.: Elements of Algebraic Topology. Advanced book
classics. Perseus Books, 1984. 4

[MW10] MROZEK M., WANNER T.: Coreduction homology algorithm
for inclusions and persistent homology. Computers & Mathematics with
Applications 60, 10 (2010), 2812–2833. doi:10.1016/j.camwa.
2010.09.036. 4

[OPT∗15] OTTER N., PORTER M. A., TILLMANN U., GRINDROD P.,
HARRINGTON H. A.: A roadmap for the computation of persistent ho-
mology. ArXiv e-prints (June 2015). arXiv:1506.08903. 1

[plo15] Plotly technologies inc. collaborative data science, 2015.
Motréal, QC. URL: https://plot.ly. 8

[Rob99] ROBINS V.: Towards Computing Homology from Fi-
nite Approximations. Topology Proceedings 24, 1 (1999), 503–
532. URL: http://topology.auburn.edu/tp/reprints/
v24/tp24222.pdf. 3

[RWS11] ROBINS V., WOOD P. J., SHEPPARD A. P.: Theory and Al-
gorithms for Constructing Discrete Morse Complexes from Grayscale
Digital Images. IEEE Trans. on Pattern Analysis and Machine Intelli-
gence 33, 8 (2011), 1646–1658. doi:10.1109/TPAMI.2011.95.
4

[Wei11] WEINBERGER S.: What is... Persistent Homology? Notices of
the American Mathematical Society 58, 1 (2011), 36–39. 1

[Wri16] WRIGHT M. L.: Introduction to Persistent Homology. In 32nd
International Symposium on Computational Geometry (SoCG 2016)
(Dagstuhl, Germany, 2016), vol. 51 of Leibniz International Proceed-
ings in Informatics, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
pp. 72:1–72:3. doi:10.4230/LIPIcs.SoCG.2016.72. 1

[ZC05] ZOMORODIAN A. J., CARLSSON G.: Computing Persistent Ho-
mology. Discrete & Computational Geometry 33, 2 (2005), 249–274.
doi:10.1007/s00454-004-1146-y. 4, 6

[Zom05] ZOMORODIAN A. J.: Topology for computing. Cambridge
University Press, 2005. URL: http://dl.merc.ac.ir/handle/
Hannan/6824. 1

[Zom10] ZOMORODIAN A. J.: The Tidy Set: a minimal simplicial set
for computing homology of clique complexes. In Proceedings of the
Annual Symposium on Computational Geometry (2010), pp. 257–266.
doi:10.1145/1810959.1811004. 4

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

http://dx.doi.org/10.1109/SYNASC.2014.84
http://dx.doi.org/10.1109/SYNASC.2014.84
http://dx.doi.org/10.1007/s002000100078
http://dx.doi.org/10.1017/S0004972700028574
http://dx.doi.org/10.1117/12.57059
http://dx.doi.org/10.1117/12.57059
http://dx.doi.org/10.1090/S0273-0979-07-01191-3
http://dx.doi.org/10.1090/S0273-0979-07-01191-3
http://dx.doi.org/10.1007/s10208-013-9145-0
http://dx.doi.org/10.1117/12.279674
http://arxiv.org/abs/1112.1245
http://arxiv.org/abs/1407.2275
http://dx.doi.org/10.1007/s00454-008-9073-y
http://dx.doi.org/10.1007/s00454-008-9073-y
http://dx.doi.org/10.1145/1998196.1998229
http://dx.doi.org/10.1109/HiPC.2013.6799139
http://dx.doi.org/10.1016/j.camwa.2010.09.036
http://dx.doi.org/10.1016/j.camwa.2010.09.036
http://arxiv.org/abs/1506.08903
https://plot.ly.
http://topology.auburn.edu/tp/reprints/v24/tp24222.pdf
http://topology.auburn.edu/tp/reprints/v24/tp24222.pdf
http://dx.doi.org/10.1109/TPAMI.2011.95
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.72
http://dx.doi.org/10.1007/s00454-004-1146-y
http://dl.merc.ac.ir/handle/Hannan/6824
http://dl.merc.ac.ir/handle/Hannan/6824
http://dx.doi.org/10.1145/1810959.1811004

