
 

F A C U L T Y  O F  S C I E N C E  
U N I V E R S I T Y  O F  C O P E N H A G E N  

 

Thesis for the Master degree in Mathematics.
Department of Mathematical Sciences,

University of Copenhagen

Computing Persistent Homology via
Discrete Morse Theory

Brian Brost

Supervisors:
Jesper Michael Møller

Pawel Winter

December 13, 2013



Abstract

This report provides theoretical justification for the use of discrete Morse the-
ory for the computation of homology and persistent homology, an overview
of the state of the art for the computation of discrete Morse matchings and
motivation for an interest in these computations, particularly from the point
of view of topological data analysis. Additionally, a new simulated anneal-
ing based method for computing discrete Morse matchings is presented. For
several problem instances this outperforms the best known heuristics for the
task.

The computation of homology and persistent homology has become an
important task in computational topology, with applications in fields such as
topological data analysis, computer vision and materials science. Unfortu-
nately computing homology is currently infeasible for large input complexes.
Discrete Morse theory enables the preprocessing of homology computation
by reducing the size of the input complexes. This is advantageous from a
memory and performance point of view. The key to making efficient use of
discrete Morse theory is the quick computation of optimal, or good, discrete
Morse matchings.

Resume

Denne specialerapport giver et overblik over den aktuelle status for udregning
af diskrete Morse matchings og motiverer interessen for disse udregninger,
specielt ud fra synspunktet af topologisk dataanalyse. Yderligere præsenteres
en ny metode for udregning af diskrete Morse matchings baseret p̊a simulated
annealing. I mange problemer er denne nye metode hurtigere end de bedst
kendte heuristikker.

Udregning af homologi og persistent homologi har udviklet sig til et
vigtigt omr̊ade i algoritmisk topologi, med anvendelser indenfor omr̊ader
som topologisk dataanalyse og computer vision. Desværre er udregning af
homologi upraktisk for store inputkomplekser. Diskret Morse teori gør det
muligt at forbehandle homologiudregninger ved at reducere størrelsen af in-
putkomplekset. Dette har fordele med hensyn til hukommelse og køretid.
Det vigtigste element for at muliggøre en effektiv brug af diskret Morse teori
er den hurtige udregning af optimale, eller i hvert fald gode, diskrete Morse
matchings.
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This report assumes a basic familiarity with algebra, corresponding to chap-
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Some familiarity with algebraic topology would also help, but is not strictly
necessary. Furthermore knowledge of basic algorithmic concepts, particularly
related to NP -completeness and integer programming is assumed.
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1 Introduction

This report is intended to provide theoretical justification for the use of dis-
crete Morse theory for the computation of homology and persistent homology
and an overview of the state of the art for the computation of discrete Morse
matchings. Motivation for an interest in these computations is provided in
particular from the point of view of topological data analysis.

Since this report should be readable for computer scientists with only lim-
ited familiarity with topology, a brief introduction to the required topology is
given in Section 2. One of the fundamental problems in topology is to decide
if two spaces are homeomorphic or not. The obvious way of showing that two
spaces are homeomorphic is to construct a homeomorphism between them,
but if we wish to show that two spaces are not homeomorphic, we would have
to show that there does not exist any homeomorphism between them.

It turns out the problem of homeomorphy is undecidable [26], meaning
that no algorithm can always correctly determine if two topological spaces
are homeomorphic. When we wish to investigate whether two spaces are
homeomorphic, we often use topological invariants to show that they can
not be homeomorphic. An example of a topological invariant is homotopy
equivalence, but the problem of deciding whether two spaces are homotopy
equivalent is also undecidable [26]. We therefore consider coarser invariants,
and one of the main invariants used in computational topology is homology.

The primary motivation for this project is the field of topological data
analysis, a more thorough introduction to topological data analysis will be
given in Section 2.4. In topological data analysis we have two tasks, we
first need to approximate the topological space from which our data origi-
nates, and secondly, we need to compute topological invariants to represent
the topological properties of our approximated space. Both tasks are com-
putationally difficult. Section 3 provides an overview of some of the most
commonly used tools for solving the first task. For the second task, the most
popular invariants to compute are homology and persistent homology. These
will be described in detail in Section 5.

We will here give a brief example of topological data analysis, and in
particular of the advantages of persistent homology. Figure 1 illustrates a
possible problem in data analysis. We have a set of points such that the
cluster on the left may have been sampled from a Gaussian, while the points
on the right appear to have been sampled noisily from a circle, and we would
like to understand where the points were sampled from. While this point set
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Figure 1: Point set where the points on the left appear to have been sampled
from a Gaussian and the points on right appear to have been sampled noisily
from a circle.

was just generated as a simple illustration, an example of a practical problem
that could be solved by the same methods is that of identifying the tunnels
and voids in a protein.

If we attempted to perform cluster analysis, we could discover that there
seem to be two clusters, but would learn nothing about the fact that the
points on the right have been sampled from a circle. In Figure 2 we have
illustrated so called alpha complexes for various values of the parameter α.
These alpha complexes form our approximations for the space from which the
points were sampled. As α grows, so does the alpha complex. If instead of
considering the alpha complex, we just consider its shape, α can be considered
as controlling the level of detail that is being examined.

The next task is to compute the homology of the alpha complexes in order
to gain information about topological properties of their underlying spaces.
In particular, the so called zeroth Betti number tells us that for α = 20 and
α = 30, there are two connected components or clusters, and the first Betti
number tells us that the connected component on the right has the homology
of a circle, or more specifically, that it contains a hole. Unfortunately, without
knowing more about our problem, there is no a priori way of identifying an
appropriate α value, and for α values too small, we would identify too many
connected components, whereas for α values too large, we would only detect
one connected component. Even worse, for many applications there might
not be a particular α value which is more appropriate than any other. The
advantage of persistent homology over homology is that it enables us to
automatically capture only those topological properties which persist as α
grows. An underlying assumption of topological data analysis is that this
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(a) α = 0 (b) α = 5 (c) α = 10

(d) α = 20 (e) α = 30 (f) α = 60

Figure 2: Alpha complexes for α between 0 and 60 for the point set from
Figure 1.

will allow us to capture the important features of the data. Furthermore,
the stability of persistent homology under perturbations makes it suitable
for data analysis in the presence of noise [6].

An additional important advantage of topological data analysis is that
the running times are generally dependent on the dimension of the complex
representing the data, rather than the extrinsic dimension of the data.

Unfortunately, the best known running time for computing persistent
homology is O(nω), where ω is the exponent for matrix multiplication [28].
The best current known estimate for ω is 2.3727 [37], and the best performing
algorithm in practice is Strassen’s algorithm, with a running time ofO(n2.807).

It might be possible to speed up the computation of homology by improv-
ing the running time of matrix multiplication, but improving this would solve
a much broader and more difficult problem than what we are interested in,
and improvements are therefore less likely to be easy to obtain. In particular,
we can not use topological insights to improve the general running time of
matrix multiplication.

Instead we focus on using discrete Morse theory as a preprocessing step
to reduce the size of the input to our homology and persistent homology algo-
rithms. Discrete Morse theory and its applications to homology computation
will be introduced in Section 6. In order for this preprocessing via discrete
Morse theory to be efficient, it turns out that we need to quickly compute
discrete Morse matchings while minimizing the number of critical simplices.
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Section 7 provides an overview of the state of the art for computing Morse
matchings and provides a new approach based on simulated annealing which
is faster than the best known heuristics for several problems. The optimal al-
gorithm for computing Morse matchings for surfaces presented in Section 7.5
will also justify the inclusion of Section 4 introducing surfaces and presenting
the theoretical background enabling Lewiner’s optimal algorithm to work.

Section 7.10 provides experimental results showing the relative perfor-
mances of the heuristics described in Section 7. We see that none of the
tested heuristics perform better on all the simplicial complexes, but rather
that the relative performances of the heuristics depend on the complex. We
also see that for those complexes which are sufficiently difficult to find dis-
crete Morse matchings for, such that the collapse and coreduction heuristics
produce inconsistent results, simulated annealing performs better.

The report concludes with Section 9 describing some possible directions of
future work related to this project and topological data analysis in general.
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2 Introduction to Topology

This section provides a review of the most basic aspects of topology that will
be required. If the reader is familiar with basic topology and algebraic topol-
ogy, the only section that needs to be read is Section 2.4, the introduction
to topological data analysis.

We will begin by introducing topological spaces, the building blocks of
topology, along with some of the most important properties thereof. We
will then proceed to give some topological invariants that are needed to un-
derstand discrete Morse theory and to classify the compact surfaces. The
sections related to compact surfaces are introduced here because they form
the theoretical basis for the optimal algorithm for computing discrete Morse
matchings presented in Section 7.5. This section concludes with an intro-
duction to topological data analysis. The material presented in this report
has been significantly motivated by an interest in applications to topological
data analysis.

2.1 Topological Spaces

Definition 2.1. A topological space is a set X together with a collection
O of subsets called the open sets, such that

1. Any union of open sets is open

2. The intersection of any two open sets is open.

3. The empty set and X itself are open.

The collection O is called the topology on X.

A topological space is denoted by the pair (X,O), although the O will
usually be omitted, and X will be used to refer to the space and the set
when there is no room for ambiguity. Note that while the definition of a
topological space requires only that the intersection of any two open sets is
open, it immediately follows by induction that this actually holds for any
finite intersection of open sets. We call a set A ⊂ X closed if X \A is open.

Definition 2.2. If X is a set, a basis for a topology is a collection B of
subsets of X such that for each x ∈ X there is at least one B0 ∈ B such that
x ∈ B0. Additionally, if x ∈ B0 ∩B1, then there exists a B2 ⊂ B0 ∩B1 such
that x ∈ B2.
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Given a basis B = {Bi|i ∈ I}, we can then define the topology generated
by B to be the sets U = ∪k∈K,K⊂IBk. Bases are useful since topologies are
generally too large to specify explicitly, however in this report we will only
require bases so that we can later define manifolds.

Example 2.3. The standard topology on R is the topology generated by the
open intervals, the intervals of the form (a, b) for a, b ∈ R with b > a.

Definition 2.4. If (X,O) is a topological space, with A ⊂ X, then A together
with the collection of subsets O|A = {U ∩ A|U ∈ O} is a topological space
with the induced topology, and we call (A,O|A) a subspace of (X,O).

An open set containing a point x ∈ X is called a neighborhood of x.

Definition 2.5. A topological space X is called Hausdorff if for each pair
of distinct points x, y ∈ X, there exist disjoint neighborhoods of x and y.

An important class of topological spaces are the metric spaces. For these,
the open sets are defined by a particular distance function satisfying the
metric axioms.

Definition 2.6. Let X be a set, and let d : X ×X → R be a map, then d is
a metric if the following three conditions are satisfied.

1. d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z)

A set X together with a metric d is called a metric space.

We define an open ball around x ∈ X for some ε > 0 to be

Bε(x) = {y ∈ X|d(x, y) < ε}.

It is simple to verify that the open balls are a basis, and the metric topology
on X is defined to be the topology generated by the open balls. We can thus
regard any metric space as a topological space, with topology generated by
the open balls of the metric.
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2.2 Homeomorphisms

Definition 2.7. Let X and Y be topological spaces, a map f : X → Y is
called continuous if the preimage of any open set is open.

Definition 2.8. A map f : X → Y is called a homeomorphism if it is
bijective, and f and f−1 are both continuous. In this case, we say that X
and Y are homeomorphic and write X ∼= Y .

Clearly homeomorphism of spaces is an equivalence relation. Homeo-
morphisms are the most important maps in topology and we consider two
topological spaces which are homeomorphic to be topologically equivalent.
This notion of equivalence can be understood by the fact that a topology
is defined in terms of its open sets, and these are preserved by homeomor-
phisms.

Example 2.9. For n ≥ 1, the punctured sphere Sn − p is homeomorphic to
to Rn. The homeomorphism f : Sn − p→ Rn given by

f(x1, . . . , xn+1) =
1

1− xn+1

(x1, . . . , xn)

is called a stereographic projection. This homeomorphism is visualized for
n = 1 in Figure 3.

2.3 Invariants

We can show that two spaces X and Y are homeomorphic by constructing
a homeomorphism between the two spaces. If, however, we want to show
that two spaces are not homeomorphic, we use a topological property or
topological invariant. This can be considered as a map f such that X ∼= Y
implies f(X) and f(Y ) are the same in some sense. Then we can find some
invariant f0 such that f0(X) and f0(Y ) are not the same and conclude that
X and Y are not homeomorphic. In other words, a topological invariant is
any property which is invariant under homeomorphism.

A complete invariant is a map f such that X ∼= Y if and only if
f(X) and f(Y ) are the same. Homeomorphism can itself be regarded as
a complete, but obviously trivial, invariant. Once we have introduced the
Euler characteristic and orientability, we will be able to provide a complete
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Figure 3: Stereographic projection of punctured circle onto real line. For a
point x ∈ S1, the straight line from the north pole p through x crosses the
x-axis at f(x).

invariant for the compact surfaces. This classification theorem of compact
surfaces was one of the most important early results of algebraic topology
and will be needed for the algorithm presented in Section 7.5.

Suppose we are given two invariants f and g, then we say that f is a
coarser invariant than g if g(X) = g(Y ) implies f(X) = f(Y ). Thus, if f is
coarser than g, then there are spaces that we can not tell apart using f , but
that we might be able to tell apart using g.

2.3.1 Compactness

Compactness is one of the most important topological properties.
An open cover of a topological space X is a collection of open sets

C = {Uα|α ∈ A}, such that X ⊂ ∪α∈AUα. If B ⊂ A satisfies X ⊂ ∪α∈BUα,
then we say that {Uα|α ∈ B} is a subcover of C. Finally, we say that X is
compact if any open cover of X has a finite subcover.

Example 2.10. As a simple example of compactness, we note that the closed
interval [0, 1] is compact as a subspace of R, whereas the open interval (0, 1)
is not.

It is easy to see that compactness is a topological invariant.
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Lemma 2.11. Let f : X → Y be a homeomorphism, then X is compact if
and only if Y is compact.

Proof. Suppose, without loss of generality, that X is compact. Let C =
{Uα|α ∈ A} be an open cover of Y , then D = {f−1(Uα)|α ∈ A} is an open
cover of X. Now since X is compact there exists a B ⊂ A such that D′ =
{f−1(Uα)|α ∈ B} is a finite cover of X and it follows that C ′ = {Uα|α ∈ B}
is a finite subcover of C, and therefore that Y is compact.

2.3.2 Homotopy Equivalence

A central concept that will be needed when we introduce discrete Morse
theory is that of homotopy equivalence.

Definition 2.12. Given topological spaces X and Y , and continuous maps
f0, f1 : X → Y , we say that f0 and f1 are homotopic, and denote it by
f0 ' f1, if there exists a continuous map F : X × I → Y , such that f0(x) =
F (x, 0) and f1(x) = F (x, 1) for all x ∈ X. Here I denotes the unit interval
[0, 1] ⊂ R.

Definition 2.13. The spaces X and Y are homotopy equivalent, denoted
X ' Y , if there are maps, called homotopy equivalences, f : X → Y and
g : Y → X, such that g ◦ f ' idX , and f ◦ g ' idY , where idX and idY are
the identity maps on X and Y respectively.

Homotopy equivalence is an equivalence relation of spaces and if two
spaces are homotopy equivalent, we say that they have the same homo-
topy type. A space which has the homotopy type of a point is called
contractible. It is immediate from the definition of homotopy equivalence
that it is a topological invariant.

Observation 2.14. If two spaces X and Y are homeomorphic, they are also
homotopy equivalent.

Proof. If f : X → Y is a homeomorphism with inverse f−1 : Y → X, then
f−1 ◦ f = idX , and f ◦ f−1 = idY , so in particular, they are homotopy
equivalences.

The converse is not generally true, as the below example illustrates

Example 2.15. A d-ball is homotopy equivalent to a 1-point space, but
clearly not homeomorphic to it, since they have different cardinalities.

9



Recall that we said that homotopy equivalence is important to discrete
Morse theory. This is because the central Theorem of discrete Morse theory,
Theorem 6.5, tells us that given a simplicial complex X, there exists an often
significantly smaller CW-complex which is homotopy equivalent to X. These
complexes will be defined properly in Section 3.

Let X be a topological space and A a subspace of X, then a continuous
map r : X → A is a retraction if the restriction of r to A is the identity
map on A, that is, if r ◦ i = idA, where i is the inclusion map and id is the
identity map. If additionally, we have that i ◦ r ' idX , r is a special type of
homotopy equivalence called a deformation retract.

2.3.3 Singular Homology

We will not go into detail here, but will simply note that for every topo-
logical space X, we can define its singular homology groups. These are
groups Hn(X), defined for n ∈ N0. We will in Section 5 introduce simplicial
homology in detail, along with the fact that when the simplicial homology
groups are defined, they are isomorphic to the corresponding singular ho-
mology groups. For an introduction to singular homology, see chapter 2 of
[19]. Homology is the most important topological invariant in computational
topology, and the reason for this is that it provides a good balance between
computational tractability and coarseness.

Having defined singular homology, we can state the following theorem,
demonstrating the homotopy invariance of singular homology. This will be
important later for applications of discrete Morse theory to computational
homology, since discrete Morse theory allows us to simplify complexes while
preserving homotopy type, and the below theorem ensures that preserving
homotopy type also preserves homology.

Theorem 2.16. [19] Let f : X → Y be a continuous map, then there exists
an induced homomorphism f∗ : Hn(X) → Hn(Y ) for each n. Furthermore,
if f is a homotopy equivalence, f∗ is an isomorphism.

An immediate consequence of this is the weaker statement that singular
homology is a topological invariant.

Observation 2.17. If X and Y are homeomorphic, Hn(X) and Hn(Y ) are
isomorphic for each n.
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We will use the following topological property frequently throughout this
report.

Definition 2.18. The n’th Betti number is the rank of Hn(X).

2.3.4 Euler Characteristic

The Euler characteristic is an important topological invariant in its own right,
but for this report we require the Euler characteristic because it will later
allow us to prove the NP -hardness of finding optimal so called discrete Morse
matchings. It will also allow us to classify the compact surfaces in Section 4.

Definition 2.19. The Euler characteristic of X can be defined as

χ(X) =
∞∑
i=0

(−1)ibi,

where bi is the i’th Betti number of X.

Since the Euler characteristic is here defined in terms of the singular
homology groups, it follows from the definition that it is an invariant of ho-
motopy equivalence, and therefore also a topological invariant. It is also clear
that the Euler characteristic must be a coarser invariant than the homology
groups.

Corollary 2.20. If X and Y are homotopy equivalent, χ(X) = χ(Y ).

2.4 Topological Data Analysis

We will now give a slightly more formal definition of what we mean by topo-
logical data analysis. In topological data analysis we assume that we have
a finite set S ⊂ Y , where Y is a topological space, of points sampled with
noise from an unknown topological space X. Our goal is to recover properties
of the topological space X, given our dataset S.

We differentiate between extrinsic properties, which are properties of
Y , and intrinsic properties, which are properties of X or our representation
of X. This distinction is important, particularly in the analysis of high
dimensional data, since often the intrinsic dimension of the representation of
the data will be much lower than the extrinsic dimension in which the data
is embedded.
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In order to analyze data, we need to make additional assumptions beyond
the data itself, since otherwise we have no basis to make inferences. Thus,
for example in principal component analysis, we assume that the space X
is a linear subspace of Y . In manifold learning we assume that X is a
manifold. Since most real-world point sets are sampled from spaces that
violate these assumptions, methods such as principal component analysis or
manifold learning may not work as well as they do when their assumptions
are met [41]. One of the core benefits of topological data analysis is that we
make very weak assumptions about the intrinsic properties of the data. It is
therefore potentially applicable to a much wider range of problems than the
above mentioned methods, and can be an ideal first tool for data analysis,
when we know very little about our data.

Given our finite set of points S, the general approach used in topological
data analysis involves two steps. We first need to approximate the space X by
a combinatorial structure K. This can for example be a simplicial or cubical
complex. We will cover approaches to this step in Section 3.2. Secondly,
we compute topological invariants of K, giving us approximate information
about the topological properties of the space X. We have already provided
some invariants, and will focus on the most important invariant in topological
data analysis, persistent homology, in Section 5.
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3 Complexes

We will begin this section by introducing geometric simplicial complexes, and
then define abstract simplicial complexes, which are easier to work with. We
will also show that given one type of simplicial complex, we can construct the
other, and that these constructions are unique up to certain isomorphisms
which will be defined below. Having introduced simplicial complexes, we
will provide some of methods of constructing simplicial complexes which are
particularly useful in topological data analysis. We conclude this section
by introducing CW complexes which can be regarded as a generalization of
simplicial complexes. The Morse complex introduced in Section 6.7 is an
example of a CW complex.

3.1 Simplicial Complexes

3.1.1 Geometric Simplicial Complexes

A set T = {a0, ..., ak} of points in Rd is called affinely independent if the
only solution to the set of equations

∑k
i=0 αiai = 0 and

∑k
i=0 αi = 0 is the

zero solution α0 = ... = αk = 0. As a simple illustration of this definition, 3
points are affinely independent if they are not all on a line defined by any 2
of them. Similarly, 4 points are affinely independent, if they are not all on a
plane defined by three of them.

Definition 3.1. Given a set T = {a0, ..., ak} of k + 1 affinely independent
points in Rd for k ≤ d, a k-simplex, denoted by σT , is the convex hull of T .
The simplices σU , U ⊂ T are the faces of σT .

In the lower dimensions, the k-simplices are familiar shapes. A 0-simplex
is simply a vertex, a 1-simplex is an edge, a 2-simplex is a triangle and a
3-simplex is a tetrahedron.

Definition 3.2. A geometric simplicial complex in Rd is a finite col-
lection of simplices K in Rd such that

(i) Every face of a simplex of K is in K.

(ii) The intersection of any two simplices of K is a face of each of them.
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Figure 4: The first collection is a simplicial complex. The second collection
is not a simplicial complex since the two triangles intersect only in part of
an edge.

An important and immediate consequence of this definition is that the
intersection of any two simplices is itself in K. See Figure 4 for some simple
examples illustrating simplicial complexes.

A subcollection L of K is called a subcomplex of K if it is itself a simpli-
cial complex. The subcomplex consisting of all k-simplices for k ≤ p is called
the p-skeleton of K, and is denoted by K(p). The vertices of K are then
the simplices in K(0) and we call K(1) the graph of K. An important class of
simplicial complexes in computational topology are the clique complexes,
where the higher dimensional simplices are fully determined by the cliques
in the 1-skeleton. In Section 3.2.3 we will encounter a type of clique complex
called the Vietoris-Rips complex.

Definition 3.3. Let |K| be the subspace of Rd that is the union of all the sim-
plices of K with the induced topology. We call the space |K| the underlying
space of K.

We say that a simplicial complex K is a triangulation of a topological
space X if |K| is homeomorphic to X.

We can now introduce simplicial maps.

Lemma 3.4. [32] Let K and L be complexes, and let f : K(0) → L(0) be a
map. Suppose that whenever the vertices v0, . . . , vn of K span a simplex of
K, the points f(v0), . . . , f(vn) are vertices of a simplex of L, then f can be
extended to a continuous map g : |K| → |L| such that

x =
n∑
i=0

tivi =⇒ g(x) =
n∑
i=0

tif(vi).
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Definition 3.5. In light of Lemma 3.4, we define g to be the simplicial
map induced by the vertex map f .

Lemma 3.6. [32] Suppose f : K(0) → L(0) is a bijective correspondence
such that the vertices v0, . . . , vn of K span a simplex of K, if and only if the
points f(v0), . . . , f(vn) span a simplex of L. Then the induced simplicial map
g : |K| → |L| is a homeomorphism.

Definition 3.7. We call the map g a simplicial isomorphism of K with
L.

Geometric simplicial complex can be difficult to work with. The challenge
presented is that for anything other than very small complexes, there are a
huge number of simplices which have to intersect in very specific ways, as
required by Definition 3.2(ii). Abstract simplicial complexes allow us to
disregard this geometric complication.

3.1.2 Abstract Simplicial Complexes

Definition 3.8. An abstract simplicial complex is a set of subsets S of
a finite set of vertices V such that if α ∈ S and β ⊂ α, then β ∈ S.

Note that V need not be finite in general, but that we have used this
definition since computational results are our main interest.

The subsets S are called simplices, and we call a simplex containing
p + 1 elements a p-dimensional simplex and denote it by α(p), or simply
α when the dimension is not important. The dimension of the simplicial
complex is the maximum dimension among its simplices. If α ⊂ β, we say
that α is a face of β, and write α < β. Similarly, we say that β is a coface
of α and write β > α. If additionally |α| = |β| − 1, we say that α is an
immediate face of β and that β is an immediate coface of α. We call
a face α of β a free face if α is not a face of any other simplex in S. We
call the 0-dimensional simplices of the complex its vertex set. Finally, a
simplex which is not a proper face of any simplex is called a facet and a
simplicial complex is pure if all its facets have the same dimension. Note
that our above definitions imply that the empty set is a (−1)-dimensional
simplex, however we will generally disgregard this simplex from consideration
to simplify the presentation.
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1 2 3 1

4 5 6 4

7 8 9 7

1 2 3 1

Figure 5: A triangulation of the torus. Here we identify the edges as indicated
by the vertex numbers.

Example 3.9. An example of a simplicial complex is

{{1, 2, 3}, {1, 3}, {1, 2}, {2, 3}, {1}, {2}, {3}}

This is simply the abstract simplicial complex corresponding to a triangle. It
is a triangulation of the 2-ball. A slightly more complicated example is given
in Figure 5.

In practice we can provide a compact representation of a simplicial com-
plex just by listing its facets, since they are the only simplices whose mem-
bership of the complex can not be inferred from the membership of another
simplex. Thus we could represent the abstract simplicial complex from ex-
ample 3.9 just by the set {{1, 2, 3}}.

An isomorphism between two abstract simplicial complexes S and S ′ is
a bijective mapping f from the vertex set of S to the vertex set of S ′ such
that {a0, . . . , an} ∈ S if and only if {f(a0), . . . , f(an)} ∈ S ′.

3.1.3 Geometric and Abstract Simplicial Complexes

Having introduced geometric and abstract simplicial complexes, we can ex-
plain the relationship between the two.

Definition 3.10. Let K be a geometric simplicial complex with vertex set V ,
then the set of all subsets {a0, . . . , an} of V such that the vertices a0, . . . , an
span a simplex of K is called the vertex scheme of K.

The vertex scheme of a geometric simplicial complex is an example of an
abstract simplicial complex. It closely links geometric and abstract simplicial
complexes, as Theorem 3.11 demonstrates.
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Theorem 3.11. [32]

• Every abstract simplicial complex S is isomorphic to the vertex scheme
of some geometric simplicial complex K.

• Two geometric simplicial complexes are simplicially isomorphic if and
only if their vertex schemes are isomorphic as abstract simplicial com-
plexes.

Definition 3.12. If the abstract simplicial complex S is isomorphic with the
vertex scheme of the simplicial complex K, we call K a geometric realiza-
tion of S. It is uniquely determined up to a simplicial isomorphism.

While we have seen above that any abstract simplicial complex has a
geometric realization, Theorem 3.13 gives a guarantee on the dimension of
the geometric realization.

Theorem 3.13. [12] Every abstract simplicial complex of dimension d has
a geometric realization in R2d+1.

Note that a d-dimensional abstract simplicial complex can easily have a
geometric realization in Rd. Recall example 3.9, this has the obvious geo-
metric realization in R2, given in Figure 6.

1 2

3

Figure 6: Geometric realization in R2 of {{1, 2, 3}}.

Example 3.14. The graph K5 is an abstract simplicial complex of dimension
1 which does not have a geometric realization in R2 or lower. It is illustrated
in Figure 7. More generally, any non-planar graph will not have a geometric
realization in R2 or lower. Even more generally, the d-skeleton of the (2d +
2)−simplex cannot be embedded in R2d according to the Van Kampen-Flores
Theorem.
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1

2

3 4

5

Figure 7: K5

The proof of Theorem 3.13 is slightly complicated, and to get an upper
bound on the embedding dimension we can also consider the following much
more straightforward construction.

Example 3.15. Let S be an abstract simplicial complex with vertex set V
given by {v1, . . . , v|V |}. Then we can obtain a geometric realization of S
in R|V | by defining for an abstract simplex {v1, . . . , vt} the corresponding
geometric simplex to be the convex hull of the points {e1, . . . , et}, where ei
is the i’th standard basis vector. This is illustrated for S = {{1, 2, 3}} in
Figure 8.

Figure 8: Geometric realization of S = {{1, 2, 3}} in R3.

In light of the close relationship between abstract and geometric simplicial
complexes, we will refer simply to simplicial complexes, without needing to
specify which type we mean.
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3.2 Constructing Simplicial Complexes

Recall that in topological data analysis our input is not a simplicial complex,
but rather a finite set S ⊂ Y of points embedded in a topological space
Y sampled noisily from some topological space X. Our task is therefore
to construct an approximation of X and three possible approaches will be
given in Sections 3.2.1, 3.2.2 and 3.2.3. These approaches will involve either
constructing so called nerves of covers, or clique complexes.

Before moving on to a description of the approaches we use to approxi-
mate X, we need to introduce an important result in topological data anal-
ysis, Leray’s Nerve Lemma.

Definition 3.16. Given an open cover of S, U = {Ui}i∈I , Ui ⊂ Y , where I
is some indexing set, the nerve of U , denoted by N , is given by

• ∅ ∈ N and

• If ∩j∈JUj 6= ∅ for J ⊂ I, then J ∈ N .

It follows immediately from the definition that the nerve of a cover is a
simplicial complex.

In the following methods the union of the sets in an open cover of X forms
our approximation ofX and the nerve will function as our finite combinatorial
representation of X. We define an open cover U to be good if all Ui are
contractible, as are their nonempty finite intersections. We then have the
following Nerve Lemma due to Leray.

Lemma 3.17. [41] The underlying space of the nerve of a good cover is
homotopy equivalent to the union of the sets in the cover.

This motivates our definition of a good cover. It is one for which the
nerve provides an accurate representation of the topology of the cover up to
homotopy equivalence. Specific examples of covers and nerves will be given
in Sections 3.2.1 and 3.2.2.

In order to deal with noise introduced by the sampling process, one pos-
sible solution is persistent homology which will be introduced in Section 5.2.
For persistent homology, instead of trying to just construct a simplicial com-
plex, we will construct what is known as a filtration of a simplicial complex,
which will allow us to approximate the topology of X across a range of scales
or resolutions.
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Definition 3.18. A filtration on a simplicial complex K is a collection of
subcomplexes

∅ ⊂ K0 ⊂ K1 ⊂ . . . ⊂ KN = K

For the following techniques we will make the additional assumption that
our embedding space Y is a metric space. Doktorova and Zomorodian provide
an overview of various techniques where we do not even need to assume that
Y is a metric space [10].

3.2.1 Cech Complexes

We denote by Bε(x) the open ball of radius ε centered at X. Thus,

Bε(x) = {y ∈ Y |d(x, y) < ε},

and we have the following open cover of S

Uε = {Bε(x)|x ∈ S}.

We define the Cech complex Cε to be the nerve of Uε.

Figure 9: A set of 8 points in the plane with covers Uε and Cech complexes
Cε for two difference values of ε. [41]

To see that Uε is a good cover, we must show that any finite intersection
of sets in Uε is contractible. Since intersections of convex sets are convex and
each ball in Uε is convex, the fact that Uε is a good cover follows from the
fact that convex sets are contractible.
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Since the cover is good, the Cech complex is homotopy equivalent to the
union of the sets in Uε according to the Nerve Lemma.

We have defined the Cech complex for a given value of ε, but since our
points are sampled noisily, it is likely that some of the topological properties
of Cε will be caused by noise. We will therefore consider the simplicial com-
plex C∞ and its filtration. This is possible since for ε1 ≤ ε2, Cε1 is clearly a
subcomplex of Cε2 . As we increase our scale parameter ε, the Cech complex
grows from C0 = ∅ to eventually being just an (|S| − 1)-simplex for C∞.
Since an n-simplex has 2n+1 faces, the Cech complex has size exponential
in the size of S and the dimension of the Cech complex can be significantly
larger than the embedding dimension. The Cech complex is computationally
infeasible to compute in practice, so we will now look at complexes which are
more practical.

3.2.2 Alpha Complexes

Suppose now that for each of our points in p ∈ S we assign a real valued
weight wp. We then define the power region, R(p), of a point p ∈ S to
be the set of points y ∈ Y closest to it in terms of the power distance,
π(p, y) = |py|2 − wp. The power diagram is the subdivision of Y into
power regions, and the dual of the power diagram is called the regular
triangulation of S. Note that if the weights for all p ∈ S are 0, or just
equal to each other, the power diagram and regular triangulation are just
the well known Voronoi diagram and Delaunay triangulation.

Recall that the Cech complex is the nerve of a cover where we took an
open ball of radius ε centered at each point x ∈ S. We can now use the
power regions to restrict the possible intersections between the elements of
our cover. We define the following cover

Uε = {Bε(x) ∩R(x)|x ∈ S}

and let the alpha complex, Aε, be the nerve of the cover. Clearly Uε is
a good cover since each power region is convex. As we increase our scale
parameter ε, the alpha complex grows from A0 = ∅ to eventually being the
regular triangulation of S for A∞. Since the underlying spaces of the covers
of the alpha and Cech complexes are the same, it follows immediately from
the Nerve Lemma that the complexes are homotopy equivalent.

If the points in S are in what is known as general position, the max-
imum dimension of the alpha complex is no greater than the embedding
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dimension of S. There are several assumptions required for this notion of
general position to be fulfilled, the details of which can be found in [11]. For
example, if S is embedded in Rd, we require that any d + 1 or fewer points
in S be affinely independent. The important thing to note is that even if
the points in S are not in general position, we can simulate general position
using simulation of simplicity [14], or we can simply perturb the points
slightly to obtain a set of points which almost certainly is in general position.

The alpha complex of n points can be computed in O(n2) time in R3, and
the alpha complex is therefore a good choice for topological data analysis in
dimension 3 or lower. Alpha complexes are particularly interesting from the
point of view of low dimensional topological data analysis, since there exist
fast algorithms for computing homology and persistent homology for them
[8, 13].

An additional advantage of alpha complexes is that they allow us to
weight points differently according to some notion of importance or size. For
example, in protein structure prediction, our points may represent atoms,
and we may want to give them different weights according to their atomic
radii. Similarly, if we know that our points are not sampled uniformly, we
can weight the points from sparsely sampled areas higher than those from
densely sampled areas.

3.2.3 Vietoris-Rips Complexes

It is infeasible to compute Cech complexes in practice, while alpha complexes
can currently only be efficiently computed in dimension 3 or lower. The
Vietoris-Rips complex although not generally as fast to compute as the alpha
complex in low dimensions, can be somewhat efficiently computed in higher
dimensions.

The Vietoris-Rips complex will be defined slightly differently to the above
two complexes, and we first need to define the ε-neighborhood graph on
S, given by

Eε = {{u, v}|d(u, v) ≤ 2ε, u 6= v ∈ S}.
A clique in a graph is a subset of vertices such that their induced subgraph
is complete and we say a clique is maximal if adding any vertex would make
the induced subgraph incomplete. A clique or flag complex is a simplicial
complex whose facets are the maximal cliques of a graph. The Vietoris-
Rips complex Vε is the clique complex of the ε-neighborhood graph. In
particular, this means that it is fully defined by its graph, allowing a compact
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representation of the simplicial complex. Vε can, like Cε, simply be an (|S|−
1)-simplex, this occurs if the ε-neighborhood graph is complete. In practice,
we restrict our computations to some maximum scale or dimension of the
Vietoris-Rips complex to make computations feasible.

The Vietoris Rips complex is not necessarily homotopy equivalent to the
Cech complex, and it may instead be regarded as an approximation of the
Cech complex. In particular the filtrations of Cech and Vietoris-Rips com-
plexes are closely related by the following result.

Theorem 3.19. [7] For any ε > 0, we have the following inclusions,

Vε ⊂ Cε
√

2 ⊂ Vε
√

2.

The persistent homologies, defined in Section 5.2, of filtrations of Cech
and Vietoris-Rips complexes are therefore related.

As part of this project, the construction of Vietoris-Rips complexes was
implemented in ProGAL, a computational geometry library in Java. This im-
plementation was based on [39]. There are two steps to constructing Vietoris-
Rips complexes. We must first construct the 1-skeleton of the complex, the
goal is to establish for each pair of points if their distance is less than the
parameter ε. This can be done with a simple all-pairs algorithm in time
O(n2). Approximate algorithms can be faster, but at the price of only ob-
taining an approximately correct Vietoris-Rips complex. This may in some
circumstances be acceptable, since the Vietoris-Rips complex is itself only an
approximation of the underlying space of the point set. For the second step
of constructing the Vietoris-Rips complex we can disregard the geometry of
the point set and simply need to find the cliques of the graph constructed
in the first step. Since the maximal clique problem is NP -hard, this step is
hard and in practice we often restrict the number of dimensions for which
we compute the Vietoris-Rips complex. The simplest algorithm, and the one
implemented here, finds all the cliques of size k in order to determine the
simplices of dimension k− 1. This takes O(nkk2) time and is therefore expo-
nential in the dimension, but polynomial if we fix the dimension parameter.

3.3 CW complexes

As for simplicial complexes, we will only consider finite CW complexes. We
will not provide a detailed introduction to CW complexes, preferring to pro-
vide a brief sketch. We begin by defining a d-cell to be a space which is
homeomorphic to Bd.
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Definition 3.20. A cell complex or CW complex X is a topological space
constructed inductively in the following manner.

• X0 is a discrete, finite set of points which we regard as 0-cells

• We form the n-skeleton Xn from Xn−1 by attaching n-cells via at-
taching maps from the boundary of the n-cell to the n − 1 skeleton,
Sn−1 → Xn−1. For some N ∈ N, this process ends and XN = X.

For a formal introduction to CW complexes, see chapter 0 of [19]. For
now, we simply note that CW complexes are a generalization of the simplicial
complex already introduced, where we allow more general n-cells instead of
n-simplices, and we allow more general attaching maps. We require CW
complexes since the central result of discrete Morse theory will be a homotopy
equivalence between a simplicial complex and a corresponding Morse complex
which is a CW complex. The fact that this Morse complex can be significantly
smaller than the simplicial complex, while still being homotopy equivalent
to it, motivates our interest in discrete Morse theory from a computational
point of view. This is because it is generally quicker to compute topological
invariants for a smaller complex, but also because the memory requirements
of the larger simplicial complexes can be a problem.

In Sections 5 and 6, we have focused on simplicial complexes only, in order
to simplify the presentation since the complexes we are most interested in
from the point of view of topological data analysis are simplicial complexes.
We could have generalized those sections to CW complexes instead. A par-
ticularly interesting class of CW complexes for some aspects of topological
data analysis such as computer vision, are the so called cubical complexes.
See [23] for a detailed introduction to cubical complexes.

3.4 Topological Data Analysis

We have described constructing the various complexes as an attempt to ap-
proximately capture the topology of the space from which our point set was
sampled. However we have not made any statements regarding the accuracy
of these approximations. Progress has only recently begun to be made in
the area of providing conditions that guarantee that our various construc-
tions correctly reconstruct the topology of X. Some of the currently known
conditions under which the Cech, alpha and Vietoris Rips complexes pro-
vide topologically correct reconstructions are given in [34, 2]. For example,

24



it has been proven that if the underlying shape is a smooth manifold and
the sample is sufficiently dense, the Cech and alpha complexes will have the
correct homotopy type [2]. In general, the Cech and alpha complexes bet-
ter capture the topology of X, but this comes at the expense of their being
computationally more expensive to construct. In low dimensions, since the
alpha complex is actually fast to compute, it is the best choice to use.

25



4 Surfaces

We will now define the surfaces, an important class of topological spaces.
The surfaces will be of particular interest when we introduce discrete Morse
theory, since they are one of the few types of topological spaces for which we
can optimally compute discrete Morse matchings efficiently. See Section 7.5
for further details.

We will begin by defining manifolds and surfaces and then define their
orientability. We will then have introduced all the concepts needed to state
the classification theorem for the compact surfaces.

4.1 Manifolds and Surfaces

Definition 4.1. An m-manifold is a locally euclidean Hausdorff space X
with a countable basis, where locally euclidean means that for some m ∈ N,
each point in X has a neighborhood homeomorphic to Rm. If instead each
point in X has a neighborhood homeomorphic to Rm or Rm−1 × R+, X is
an m-manifold with boundary. A 2-manifold is called a surface and a
2-manifold with boundary is called a surface with boundary

Example 4.2. The 2-sphere, the torus are surfaces and the Möbius strip is
a surface with boundary. They are illustrated in Figure 10.

Figure 10: From left to right, the 2-sphere, the torus and the Möbius strip.

If we cut open disks out of any of the surfaces in Figure 10, they become
surfaces with boundary.

26



4.2 Orientability of Simplicial Complexes and Surfaces

We delayed introducing surfaces until we had introduced simplicial com-
plexes because rather than providing the standard definition of orientability
of surfaces in terms of normal vectors, we will define orientability of their
triangulations. We will then use the fact that every surface has a triangula-
tion and that orientability is a topological invariant to see that our notion of
orientability is well defined for surfaces in general. This method of defining
orientable surfaces minimizes the amount of extraneous material that needs
to be introduced.

Let σ be a simplex, then we say that two orderings of its vertices are
equivalent if they differ by an even permutation. The equivalence classes of
these orderings are called orientations. For simplices of dimension 0, there
is only one orientation and for dimension greater than 0, there are 2 orien-
tations. An oriented simplex is a simplex together with an orientation.
For an oriented simplex σ, we denote by −σ the oriented simplex that is the
same simplex but with different orientation.

An oriented k-simplex σ = [v0, . . . , vk] induces an orientation on its
(k − 1)-faces given by (−1)i[v0, . . . , v̂i, . . . , vk], where v̂i indicates that we
are considering the face of σ obtained by excluding vi. For example the
oriented 2-simplex {1, 2, 3} has the oriented faces {2, 3}, {3, 1} and {1, 2}.
We say that two k-simplices that share a (k − 1)-face σ are consistently
oriented if they induce different orientations on σ. We now note that each
facet of a triangulation of a surface is of dimension 2 and we can therefore
define the orientability of a triangulation in the below manner.

Definition 4.3. A simplicial complex which is the triangulation of a surface
is orientable if all its 2-simplices can be consistently oriented. Otherwise it
is nonorientable.

We wish to use the oriented simplices to define orientability of surfaces.
We first require the following results.

Theorem 4.4. [36] Every surface has a triangulation.

Recall that we have assumed simplicial complexes to be finite, but for
the above theorem we relax this restriction and allow a triangulation to
be infinite. If we restrict our attention to the compact surfaces, the above
theorem is valid for finite triangulations.
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Theorem 4.5. [1, III.4.13] If K1 and K2 are two triangulations of homeo-
morphic surfaces, then K1 is orientable if and only if K2 is orientable.

We can therefore extend our definition of orientable triangulations of
surfaces to one of orientable surfaces.

Definition 4.6. A surface S is orientable if all the 2-simplices of a trian-
gulation of S can be consistently oriented. Otherwise it is nonorientable.

An additional benefit of the above definition is that it immediately gives
us a simple algorithm for checking orientability. Given a triangulation, we
just need to attempt to consistently orient the 2-simplices of the triangula-
tion. If this is possible, the surface is orientable, otherwise it is nonorientable.
Since for a given simplex we only have two choices of orientation, and this
choice is fixed by an oriented neighbor, we can not fail to create a consistent
orientation when this is possible.

4.3 Classification of Compact Surfaces

As mentioned earlier, we have the following classification theorem for the
compact surfaces, where # indicates the connected sum, T 2 is the torus
and RP 2 is the real projective plane.

Theorem 4.7. [31] Every compact surface is homeomorphic to precisely one
of the following:

• S2

• T 2# . . .#T 2

• RP 2# . . .#RP 2

We have now developed the terminology to give a full characterization of
the compact surfaces in terms of orientability and Euler characteristic.

Corollary 4.8. [31] If a compact surface X is orientable it is homeomorphic
to

• S2 if χ(X) = 2

• T 2# . . .#T 2, where there are g summands if χ(X) = 2− 2g 6= 2
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If a compact surface X is not orientable, it is homeomorphic to

RP 2# . . .#RP 2,

where there are g summands if χ(X) = 2− g.

This classification can be extended to a classification of surfaces with
boundary [31] and we will in Section 7.5 see how this classification can be
used to produce an optimal algorithm for the computation of discrete Morse
matchings for compact surfaces.
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5 Homology

Since the general homeomorphism and homotopy equivalence problems are
undecidable, we will now look at homology, which is a coarser invariant, but
readily computable. Recall that this coarseness means that while some spaces
might have isomorphic homology groups but are not homotopy equivalent,
homotopy equivalent spaces have isomorphic homology groups as we saw in
Theorem 2.16. Note that simplicial homology is defined in terms of simplicial
complexes, not topological spaces, but Theorem 5.5 states that when we can
triangulate a topological space, the simplicial and singular homology groups
are isomorphic.

We will then present an extension of homology known as persistent ho-
mology. From the point of view of topological data analysis, this is useful
since it provides a method of dealing systematically with noise. Finally, we
will briefly describe how homology and persistent homology are computed.

With the algorithms presented for computing homology, we will see that
we have a readily computable topological invariant for triangulated topologi-
cal spaces. Recalling the methods from Section 3.2 for constructing simplicial
complexes approximating the topology from which a set of points has been
sampled, we will have covered all the steps needed for the use of persistent
homology in topological data analysis. The poor running times and high
memory requirements of our methods will help motivate our interest in dis-
crete Morse theory.

Note that although we only consider simplicial homology here, the main
results of this section apply also to homology of CW complexes.

5.1 Simplicial Homology

Recall that an oriented simplex is a simplex together with an orientation, as
defined in Section 4.2.

Definition 5.1. Let K be a simplicial complex. We define the p’th chain
group of K, denoted Cp(K), to be the free abelian group with basis the oriented
p-simplices, where σ1 = −σ2 if σ1 and σ2 are the same simplex with different
orientations.

Each chain cp ∈ Cp(K) can be written uniquely as a finite sum

cp =
∑

niσi,
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where ni ∈ Z and σi is an oriented simplex for each i. Here we have de-
fined the chain groups with integer coefficients, and would sometimes denote
this Cp(K;Z) It is also common in computational topology to restrict the
coefficients ni to Z2 and to instead work with Cp(K;Z2).

Let σ = [v0, . . . , vp] be an oriented simplex in K. Then for p > 0 we
define the boundary operator on σ by

δp(σ) = δp[v0, . . . , vp] =

p∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vp]

Here v̂i indicates that we are considering the face of σ obtained by excluding
vi. We can now extend this boundary operator linearly to a homomorphism
between chain groups, δp : Cp(K)→ Cp−1(K).

It is simple to verify that if σ and σ′ are the same simplex, but their
orientations differ by a single transposition, then δp(σ) = −δp(σ′), and we
can therefore conclude that for σ and σ′′ differing by an even permutation,
δp(σ) = δp(σ

′′). It follows that δp is well-defined.
The kernel of δp is a subgroup of Cp(K) called the group of p-cycles,

and denoted by Zp(K). The image of δp+1 is a subgroup of Cp(K) called the
group of p-boundaries and denoted by Bp(K). Note that Zp(K) and Bp(K)
are both normal subgroups of Cp(K) since it is abelian.

Example 5.2. Consider now the 2-simplex [1, 2, 3], with the orientation in-
dicated by the vertex numbers, then

δ2([1, 2, 3]) = (−1)0[2, 3] + (−1)1[1, 3] + (−1)2[1, 2]

= [2, 3]− [1, 3] + [1, 2].

Thus the 1-chain [2, 3]− [1, 3] + [1, 2] is a 1-boundary. Similarly,

δ1([2, 3]− [1, 3] + [1, 2]) = [2]− [3]− [1] + [3] + [1]− [2] = 0.

Thus [2, 3] − [1, 3] + [1, 2] is also a 1-cycle. This example can be seen in
Figure 11, it illustrates a broader result which will be proven in Lemma 5.3.

As we see in Figure 11, and as suggested by the names, we can informally
regard the p-cycles as closed p-chains, and the p-boundaries as the borders
of (p + 1)-chains. We wish to consider the quotient group Zp(K)/Bp(K),
consisting of non-bounding cycles, but in order for this to be well-defined,
we must first show the following lemma.
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1 2

3

1 2

3

Figure 11: On the left, the 2-chain [1, 2, 3], the orientation is counter clock-
wise in this example. On the right, the 1-chain [2, 3]− [1, 3] + [1, 2], it is the
image of δ2([1, 2, 3]). This is therefore a 1-boundary and 1-cycle.

Lemma 5.3. Bp(K) ⊂ Zp(K)

Proof. It is sufficient to show that

δp ◦ δp+1[v0, . . . , vp+1] = 0,

however this follows directly from the definition of δp as a homomorphism.

δp ◦ δp+1[v0, . . . , vp+1] =

p∑
i=0

(−1)iδp[v0, . . . , v̂i, . . . , vp+1]

=
∑
j<i

(−1)i(−1)j[. . . , v̂j, . . . , v̂i, . . .]

+
∑
j>i

(−1)i(−1)j−1[. . . , v̂i, . . . , v̂j, . . .]

= 0

The last equality follows from the fact that the sums consist of pairs with
the same simplices, but different signs.

By Lemma 5.3, we can now define the p’th homology group of K to
be Hp(K) = Zp(K)/Bp(K). An immediate consequence of this definition is
that homology groups are trivial for dimensions greater than the dimension
of the simplicial complex.

We have thus defined the homology groups of a simplicial complexK. The
p-chains together with their boundary operators form what is called a chain
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complex, denoted by (C, δ). This can be defined in any abelian category, and
homology can be defined for any chain complex in the same way as the above.
The definition used here is therefore a very specific example of the much
broader concept of homology. In this report we will generally not concern
ourselves with any other variants of homology, but simply note that homology
with coefficients in Z2 is particularly important in computational topology
since it can be faster to compute. The homology groups for coefficients in an
abelian group such as Z2 are linked to integral homology by the Universal
Coefficient Theorem. A useful property of homology is given in the following
lemma.

Lemma 5.4. Hp(K) = 0 for p greater than the dimension of K.

This is in contrast to the so called homotopy groups, another important
topological invariant, where the homotopy groups of even very simple spaces
such as S2 can be very complicated. For this reason, and the associated
difficulty of computing the homotopy groups, they are not generally used in
computational topology.

While simplicial homology can not be defined without reference to a sim-
plicial complex, recall that singular homology is defined for any topological
space X. It is a central theorem in algebraic topology that when simplicial
homology is defined, it is equivalent to singular homology.

Theorem 5.5. [32] Let K be a simplicial complex with underlying space
|K|, then Hn(|K|) and Hn(K) are isomorphic, for n ∈ N, where the former
is the n’th singular homology group of |K| and the latter is the n’th simplicial
homology group of K.

From now on we will therefore simply refer to homology, rather than
singular or simplicial homology.

Recall that we have restricted our attention to finite simplicial complexes.
The homology groups are therefore finitely generated in addition to being
abelian. The fundamental theorem of finitely generated abelian groups now
tells us how they can be written, and therefore provides an easy way of
automatically checking if the homology groups of two spaces are isomorphic.

Theorem 5.6. [23] Any finitely generated abelian group G is isomorphic to
a group of the form:

Zr ⊕ Zt1 ⊕ . . .Ztk
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where r is a nonnegative integer and ti divides ti+1 for i ∈ {1, . . . k − 1} for
k > 1. The numbers r, t1, . . . , tk are uniquely determined by G.

The p’th Betti number, bp is the rank of the p’th homology group, and is
given by r in Theorem 5.6. The numbers ti are called the torsion coeffi-
cients. As a result of the above characterization, we can represent a finitely
generated abelian group just by a vector (bp, t1, . . . , tk), and two such groups
are isomorphic if and only if the vectors representing them are the same.

In topological data analysis, there is a rough intuitive interpretation of
the k’th Betti number as representing the number of k-dimensional holes of
a space. We can make this notion of a k-dimensional hole precise by defining
it to be an equivalence class of non-bounding k-cycles. For an example illus-
trating this notion of a hole, the boundary of a 2-simplex has a 2-dimensional
hole, whereas the 2-simplex itself does not, as the cycle is a boundary in this
case. Since the 2-simplex is homeomorphic to a disk, and its boundary is
homeomorphic to a circle, this reflects the hole contained in the circle but
which is filled in for the disk.

Given that we have classified the compact surfaces in Theorem 4.7, and
given that this classification can be extended to the surfaces with boundary,
the following theorem can be obtained simply by computing the homology
groups for the possible compact surfaces, with or without boundary, ac-
cording to the classification. For our purposes, we require homology with
coefficients in Z2.

Theorem 5.7. [25] For K a connected, compact surface with or without
boundary,

H0(K;Z2) ∼= Z2,

if K is with boundary
H2(K;Z2) ∼= 0,

otherwise,
H2(K;Z2) ∼= Z2.

The first homology groups aren’t as simply characterized, but won’t be
needed in order to prove the optimality of the algorithm in Section 7.5.
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5.2 Persistent Homology

Before introducing persistent homology, we will try to briefly motivate the
concept. In Section 3.2 we introduced some methods for constructing simpli-
cial complexes from point data. These complexes were all constructed with
respect to some scale parameter, and we constructed a filtration to store the
complexes across the entire range of possible values of the scale parameter.
The problem with homology is that we compute it only for a single simplicial
complex. The topological features of this simplicial complex may be due to
noise or an inappropriately chosen scale parameter. As a simple example, if
we let our scale parameter be close to 0, the Cech and Vietoris-Rips com-
plexes will consist only of points, and b0 will simply be the number of points.
We will now see how persistent homology solves this problem. By allowing us
to exclude short lived topological features, we can control how long a topo-
logical feature has to exist in the filtration before we consider it significant.
Note that this implicitly assumes that this length of time, or persistence, of
the feature reflects its importance.

Given a simplicial complex K, let f : K → R be a non-decreasing func-
tion. Here non-decreasing means that if σ is a face of τ , f(σ) ≤ f(τ). The
level subcomplexes are then defined to be K(a) = f−1(−∞, a]. If we de-
note by ai the values of f on the simplices of K in increasing order, the level
subcomplexes define a filtration of K. Let K l = K(al), and L be the index
of the largest value aL, then we have a filtration

∅ ⊂ K0 ⊂ K1 ⊂ . . . ⊂ KL = K,

This is another way of viewing our earlier construction of the Cech, alpha and
Vietoris-Rips complexes. As the scale parameter increases, new simplices are
added, until eventually we obtain the entire complex K(∞) = K. For every
i ≤ j, we have an inclusion map from |Ki| to |Kj|, and by Theorem 2.16
we therefore obtain an induced homomorphism f i,jp : Hp(K

i) → Hp(K
j) for

every dimension p of K.
If we now consider the step from Hp(K

i) to Hp(K
i+1) the following

changes can occur: New homology classes can be created or already ex-
isting homology classes can merge or become trivial. The purpose of persis-
tent homology is to keep track of those homology classes which are present
throughout many steps in the filtration.

Definition 5.8. The p-persistent k’th homology group of K l, denoted H l,p
k is

H l,p
k = Z l

k/(B
l+p
k ∩ Z l

k).
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Since Bl+p
k and Z l

k are both subgroups of C l+p
k , Bl+p

k ∩ Z l
k is also a sub-

group of Z l
k and H l,p

k is therefore well-defined. Note that in the above the
superscripts simply indicate the indices within the filtration, and do not
denote cohomology. This definition reflects our desire to consider those non-
boundinc cycles which remain non-bounding for p steps in the filtration. An
alternative definition of persistent homology is that H l,p

k = imf l,pk . This def-

inition is equivalent since the image of the induced homomorphism f l,pk is

isomorphic to Z l
k/(B

l+p
k ∩ Z l

k).
Let γ be a class in Hp(K

i), we say that it is born at Ki if γ /∈ H i−1,i
p .

If f i,j−1
p (γ) /∈ H i−1,j−1

p but f i,jp (γ) ∈ H i−1,j
p we say that γ dies entering Kj.

This occurs when γ merges with an older class in the step from Kj−1 to Kj.
We define the persistence of γ to be j − i− 1.

Just like the Betti numbers and torsion coefficients fully characterized the
homology of a simplcial complex, barcodes or persistence diagrams can be
used to characterize the persistent homology of a filtration [5, 6]. A central
result related to the applicability of persistent homology to data analysis is
its stability with respect to perturbations, see [6] for details.

5.3 Computing Homology and Persistent Homology

We saw in Theorem 5.6 that we can represent the homology groups in terms
of their Betti numbers and torsion coefficients. We will now see how we can
determine the Betti numbers and torsion coefficients.

We first need to introduce matrix notation for homomorphisms of free
abelian groups.

Definition 5.9. Let G and G′ be free abelian groups with bases a1, . . . , an
and a′1, . . . , a

′
m, respectively. If f : G→ G′ is a homomorphism, then

f(aj) =
m∑
i=1

λija
′
i

for unique integers λij. The matrix (λij) is called the matrix of f relative
to the given bases for G and G′.

Theorem 5.10. [32, Theorem 11.3] Let G and G′ be free abelian groups of
ranks n and m, respectively and let f : G → G′ be a homomorphism. Then
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there are bases for G and G′ such that, relative to these bases, the matrix of
f has the form 

b1 0

...
0 bl

0 ··· 0
... ...

...

0
... 0

0
... 0

...
... ...

0 ··· 0

0
... 0

... ...
...

0 ··· 0


where bi ≥ 1 and b1|b2| . . . |bl and all entries except the diagonal from b1 to bl
are 0.

This is called the Smith normal form for the matrix of f and in order to
compute homology, it suffices to compute the Smith normal form of matrices
representing the boundary homomorphisms.

Theorem 5.11. Given the boundary homomorphisms δp : Cp(K)→ Cp−1(K)
and δp+1 : Cp+1 → Cp then the non-zero entries of the Smith normal form of
δp+1 are the torsion coefficients of K in dimension p. Let zp be the number of
zero columns of the Smith normal form of δp and wp the number of non-zero
rows of the Smith normal form of δp+1. Then we have bp = zp − wp, where
bp is the p’th betti number of K.

The computation of persistent homology can be reduced to the compu-
tation of homology and has the same worst case running time [42]. This is
O(nω) for field coefficients, where ω is the exponent for matrix multiplication
[28]. The best current estimate for ω is 2.3727 [37] and the best perform-
ing algorithm in practice is Strassen’s algorithm with an exponent of 2.807.
For coefficients in a principal ideal domain, such as the integers, the best
currently known running time is O(n3) [28].

Thus, we see that using field coefficients such as Z2 gives a computational
advantage, but even in this case the computation of homology and persistent
homology is prohibitively expensive for large problem instances. There are
special cases for which we can compute homology faster, for example for
clique complexes [40] or for subcomplexes of triangulations of S2 [8], but in
general we have to accept the above slow running times.

The problem of slow algorithms, along with the memory requirements of
storing simplicial complexes and their boundary matrices, will motivate our
interest in discrete Morse theory.
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6 Discrete Morse Theory

We will now give an introduction to the relevant aspects of discrete Morse
theory. Discrete Morse theory was developed by Forman [17] as an adaptation
of Morse theory to finite CW complexes. Morse theory will not be covered
in this report, but the standard reference book is [27]. In addition, we will
restrict our attention to finite simplicial complexes, rather than finite CW-
complexes, to simplify the presentation.

Our first aim in this section is to state and prove Theorem 6.5, the main
theorem of discrete Morse theory. We will then show that we can simplify
the task of computing discrete Morse functions, by considering instead so
called discrete vector fields and partial matchings in certain modified Hasse
diagrams of simplicial complexes. Finally, we show how the homology of a
simplicial complex and the persistent homology of a filtration can be com-
puted via discrete Morse theory.

6.1 Basic Concepts of Discrete Morse Theory

The two building blocks of discrete Morse theory are the discrete Morse
function and its critical points.

Definition 6.1. Let K be a simplicial complex. A function f : K → R is a
discrete Morse function if for every α(p) ∈ K

(i) |{β(p+1) > α|f(β) ≤ f(α)}| ≤ 1

(ii) |{γ(p−1) < α|f(γ) ≥ f(α)}| ≤ 1

A discrete Morse function therefore assigns higher numbers to higher
dimensional simplices, with at most one immediate face and one immediate
coface violating this condition for any one simplex. Lemma 6.4 will slightly
restrict this definition by showing that both types of violations can not occur
simultaneously for a given simplex.

We will use the terms discrete Morse and Morse interchangeably and
when the Morse function being referred to is unambiguous, we will say that
if it assigns a value c to a given simplex, that simplex has value c.

For any simplicial complex, there is always the trivial Morse function,
which assigns to each simplex its dimension. Some examples of Morse func-
tions on a triangle are given in Figure 12.
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(ii)

2 0

7

1

24
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(iii)

Figure 12: (i) is the trivial Morse function on the triangle, (ii) is a valid
Morse function, and (iii) is not a Morse function, since the vertex with value
7 has two incident edges with smaller value.

Definition 6.2. A simplex α(p) is critical if

(i) |{β(p+1) > α|f(β) ≤ f(α)}| = 0

(ii) |{γ(p−1) < α|f(γ) ≥ f(α)}| = 0

Thus a simplex is critical if none of its immediate faces are assigned a
greater or equal value, and none of its immediate cofaces are assigned a
lesser or equal value. Simplices that are not critical are called regular. We
consider a Morse function which minimizes the number of critical simplices
optimal. The motivation for this definition of optimality will follow from
Theorem 6.5. See Figure 13 for examples illustrating the critical simplices of
a triangle given different Morse functions.

0 0

0

1

11
2

(i)

2 0

4

1

36
5

(ii)

Figure 13: Critical simplices are red. The trivial Morse function, (i), has
only critical simplices and (ii) is an optimal Morse function, with only one
critical simplex.
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Example 6.3. Figure 13(ii) is an illustration of the more general fact that
for an n-simplex, an optimal Morse function has exactly 1 critical simplex,
a vertex, and that its boundary always has an optimal Morse function with
exactly 2 critical simplices.

Lemma 6.4. [18] If K is a simplicial complex with a Morse function f , then
for any simplex α(p), at least one of the following will hold

(i) |{β(p+1) > α|f(β) ≤ f(α)}| = 0

(ii) |{γ(p−1) < α|f(γ) ≥ f(α)}| = 0

Proof. Suppose that

|{β(p+1) > α|f(β) ≤ f(α)}| = 1

and
|{γ(p−1) < α|f(γ) ≥ f(α)}| = 1.

Then there exists a coface β of α such that f(β) ≤ f(α) and a face γ of α
such that f(γ) ≥ f(α).

Consider now a different face α′ of β, that has γ as a face. By the
definition of a Morse function, f(β) > f(α′) > f(γ).

Combining these inequalities, we obtain

f(α) ≤ f(γ) < f(α′) < f(β) ≤ f(α),

which is a contradiction.

We now have the necessary definitions to state the main theorem of dis-
crete Morse Theory.

Theorem 6.5. [18] Suppose K is a simplicial complex with a Morse function
f . Then K is homotopy equivalent to a CW complex with exactly one cell of
dimension p for each critical simplex of dimension p.

This result will later be strengthened from just a proof of existence when
we introduce the Morse complex in Section 6.7. This again underlines the
central importance of critical simplices in discrete Morse Theory, since fewer
critical cells mean that we have proven homotopy equivalence to a smaller
complex.

The proof of Theorem 6.5 requires some additional concepts which will
be sketched out below.
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Figure 14: Dunce Hat

6.2 Simple Homotopy Equivalence

Suppose that K2 ⊂ K1 are simplicial complexes, and K1 has exactly two
simplices α and β that are not in K2, and where β is a free face of α. Then
|K2| is a deformation retract of |K1| and hence |K1| and |K2| are homotopy
equivalent [24]. This deformation retract is called a simplicial collapse, or
just collapse. In this case we write K1 ↘ K2. Similarly we write K2 ↗ K1

and say that K1 is obtained from K2 via a simplicial expansion, or just
expansion.

Definition 6.6. If a simplicial complex K2 can be obtained from K1 by a
sequence of simplicial collapses or expansions, we say that they are simple
homotopy equivalent.

It is clear that simple homotopy equivalence is an equivalence relation
and from the above paragraph that simple homotopy equivalence implies
homotopy equivalence.

We say that a space which has a triangulation which is simple homotopy
equivalent to a point is collapsible.

Example 6.7. The Dunce hat is an example of a topological space which
is contractible, but not collapsible. The Dunce hat is the space obtained by
identifying all three sides of a triangle together as indicated in Figure 14, and
it is not collapsible since no triangulation of the Dunce hat will have any free
faces of a 2-simplex.

We have introduced simple homotopy equivalence since it is needed for the
proof of Theorem 6.5. This proof will show that simple homotopy equivalence
is at the core of discrete Morse theory.
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6.3 Proof of the Main Theorem of Discrete Morse The-
ory

Recall that in Section 5.2 we introduced level subcomplexes for non-decreasing
functions. We now introduce a slightly modified definition for level subcom-
plexes, applicable to Morse functions.

Definition 6.8. Let c ∈ R, then the level subcomplex, K(c) of K is the
subcomplex consisting of all simplices α of K such that f(α) ≤ c, and their
faces.

This definition is illustrated in Figure 15.

0

K(0)

2 01

K(1)=K(2)

2 0

4

1

3

K(3)=K(4)

2 0

4

1

36
5

K(5)=K(6)=K

Figure 15: The level subcomplexes for a discrete Morse function

Theorem 6.5 will follow from the two below lemmas involving level sub-
complexes. From now on to simplify the notation, we will not distinguish
between a simplicial complex K and its underlying space |K|.

Lemma 6.9. [18] If there are no critical simplices α with f(α) ∈ (a, b], then
K(b) is homotopy equivalent to K(a).

Lemma 6.10. [18] If there is a single critical simplex α with f(α) ∈ (a, b]
then there is a map F : S(d−1) → K(a), where d is the dimension of α, such
that K(b) is homotopy equivalent to K(a) ∪F Bd. In the above, S(d−1) is the
(d− 1)-sphere and Bd is the d-ball.

To understand why Lemma 6.9 holds, recall that a simplex has a free face
if it has a face which is not the face of any other simplex.

When we move from K(a) to K(b), we add regular simplices in pairs
consisting of a simplex and a free face thereof. Suppose now that K2 ⊂ K1
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are simplicial complexes, and K1 has exactly two simplices α and β that are
not in K2, where β is a free face of α. This is precisely the definition of a
simplicial expansion, soK1 is obtained fromK2 by a simplicial expansion, and
hence K1 and K2 are simple homotopy equivalent, and therefore homotopy
equivalent.

To understand why Lemma 6.10 holds, we note that when we add a
critical d-simplex α, it follows from our definition of a critical simplex that
the faces of α have smaller discrete Morse values, and therefore that they
all appear in an earlier level subcomplex. Therefore when we add α, we are
attaching it along its entire boundary, corresponding to attaching the d-cell
as in the statement of Lemma 6.10.

Finally, we can combine Lemma 6.9 and Lemma 6.10, to prove Theo-
rem 6.5.

Proof of Theorem 6.5. For a simplicial complex K, and given a Morse func-
tion f with maximal value c and minimal value a, we have K = K(c). To
obtain K(c), we can simply start from the minimal level subcomplex K(a)
and increase from a to c. As we pass regular simplices, Lemma 6.9 ensures
that the homotopy type of the complex does not change, and when we pass
a critical simplex of dimension p, Lemma 6.9 tells us that we need to attach
a cell of dimension p.

Note that there can be a slight issue if f is not injective, but it is simple
to perturb f , without changing which simplices are critical, to produce an
injective Morse function.

6.4 Morse Inequalities

The Morse inequalities allow us to use discrete Morse theory to provide
bounds on the Betti numbers of K. Recall firstly that the Euler charac-
teristic was defined to be χ(K) =

∑n
i=0(−1)ibi where bp is the p′th Betti

number of K. Denote by mp the number of critical simplices of dimension p
for a simplicial complex K with Morse function f , then we have the following
weak Morse inequalities.

Theorem 6.11. [18] For p ≥ 0,

• mp ≥ bp

• χ(K) =
∑n

i=0(−1)imi.
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We can strengthen the weak Morse inequalities to obtain the following
strong Morse inequalities.

Theorem 6.12. [18] For p ≥ 0,

• mp −mp−1 + . . .+ (−1)pm0 ≥ bp − bp−1 + . . .+ (−1)pb0

If we minimize the number of critical simplices, we maximize the infor-
mation provided by the Morse inequalities about the Betti numbers. This
information is of general interest, but is particularly important in the con-
text of topological data analysis, since the Betti numbers are a commonly
used topological invariant. We can therefore obtain useful information about
the topology of a simplicial complex, just by computing a Morse function
on it. Note that the Morse inequalities for the trivial Morse function also
imply that we can compute the Euler characteristic of a space easily given
its triangulation.

An important notion in discrete Morse theory is that of a perfect Morse
function, a Morse function such that the number of critical p-simplices is
equal to the p’th Betti number of the complex. Perfect Morse functions there-
fore give us the exact Betti numbers, but unfortunately Example 6.13 below
illustrates that it is not always possible to obtain perfect Morse functions.

Example 6.13. Recall from Example 6.7 that the Dunce hat is contractible,
but not collapsible. Contractibility implies that a perfect Morse function
would have 1 critical simplex of dimension 0, and no other critical simplices,
however since it is not collapsible, no triangulation of the Dunce hat admits a
Morse function with just 1 critical simplex of dimension 0, and we can there-
fore not obtain a perfect Morse function on a triangulation of the Dunce hat.

For the same reason, we have the more general result that perfect Morse
functions can not be obtained for any topological space which is contractible,
but not collapsible.

6.5 Gradient Vector Fields

We see from the above Morse inequalities and the main theorem that the
most important aspect of discrete Morse Theory is not really the Morse
function, but rather the associated critical simplices. The Morse functions
defined earlier can be difficult to compute, and in many cases, it is sufficient
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Figure 16: A discrete Morse function on the left with corresponding gradient
vector field on the right.

to simply consider what is known as the gradient vector field of the Morse
function.

We begin by noting that every regular simplex is paired with another
regular simplex. For example, if α(p) is a regular simplex with α(p) < β(p+1)

satisfying f(β) ≤ f(α), α and β are paired. We can represent these pairs
with arrows. For a simplicial complex K with a discrete Morse function,
Lemma 6.4 implies that every simplex is either the head of exactly one arrow,
the tail of exactly one arrow, or neither the head or tail of an arrow. We call
the diagram defined by the arrows the gradient vector field of the Morse
function on the complex.

The arrows function like the level subcomplexes from earlier, indicating
how to build up the entire simplicial complex from the empty complex. We
either carry out a simplicial expansion where indicated by an arrow, or attach
the critical simplices.

We wish to be able to find gradient vector fields without explicitly com-
puting their corresponding Morse functions. We will therefore characterize
the gradient vector fields as a particular type of discrete vector field, defined
below.

Definition 6.14. A discrete vector field V on K is a collection of pairs
{α(p) < β(p+1)} of simplices of K such that each simplex is in at most one
pair of V .

Given a discrete vector field V on a simplicial complex K, a V -path is a
sequence of simplices

α
(p)
0 , β

(p+1)
0 , α

(p)
1 , β

(p+1)
1 , . . . , α(p)

r , β
(p+1)
r+1 (1)

such that for each i = 0, . . . , r, {α < β} ∈ V and αi 6= αi+1 < βi. A V -path
is non-trivial closed if r ≥ 0 and α0 = αr+1. The V -paths of the gradient
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vector field a Morse function f are also referred to as the gradient paths
of f .

Theorem 6.15. [18] Suppose V is the gradient vector field of a Morse func-
tion f . Then a sequence of simplices as in (1) is a gradient path if and only
if αi < βi > αi+1 for each i = 0, . . . , r and

f(α0) ≥ f(β0) > f(α1) ≥ f(β1) > . . . ≥ f(βr) > f(αr+1).

Intuitively, the gradient paths of f are precisely those connected sequences
of simplices along which f is decreasing. We can now fully characterize the
gradient vector fields of a Morse function by the following theorem.

Theorem 6.16. [18] A discrete vector field V is the gradient vector field of a
discrete Morse function if and only if there are no non-trivial closed V -paths.

6.6 Morse Matchings

The following alternative characterization of gradient vector fields uses a
modified version of the Hasse diagram of a simplicial complex K. We begin
by defining a matching M of a graph to be a set of pairs of vertices sharing
an edge, such that no vertex is contained in more than one pair. We define
the Hasse diagram of K to be a directed graph, with vertices given by
the simplices of K, and a directed edge from β to α if and only if α is an
immediate face of β. This is also called the face poset of K. If we now let
M be a matching of the Hasse diagram of K, and {α < β} ∈M , we modify
the Hasse diagram by reversing the orientation of the edge between α and
β so that it goes from α to β. The resulting graph is called the modified
Hasse diagram of K with M and denoted H(M).

We say that a matching M is acyclic if the corresponding modified Hasse
diagram H(M) does not contain any directed cycles.

With these definitions, we can therefore see that a discrete vector field V
on K simply corresponds to a matching of the Hasse diagram. An example
is illustated in Figure 17.
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(ii)

Figure 17: (i) The gradient vector field corresponding to the Morse function
given in Figure 16 with vertices labelled and (ii) the corresponding modified
Hasse diagram.

A V -path defines a particular directed path in this modified Hasse dia-
gram. With this definition, we can characterize the gradient vector fields in
terms of the modified Hasse diagram, since we have the following theorem.

Theorem 6.17. [18] Let V be a discrete vector field. There are no nontrivial
closed V -paths if and only if there are no nontrivial closed directed paths in
the corresponding modified Hasse diagram.

Thus as already noted, a discrete vector field corresponds to a matching
of simplices in the Hasse diagram. This discrete vector field is a gradient
vector field of a Morse function if and only if the matching is acyclic, that
is, if the modified Hasse diagram contains no directed cycles.

The aim of finding an optimal Morse function for a simplicial complex
K can be restated in this language as the attempt to find a maximal acyclic
matching of the simplices of K. This formulation is most commonly used
for attempting to design optimal Morse functions, and will also be the main
focus in the section on computing discrete Morse matchings.

Definition 6.18. A Morse matching M of a simplicial complex K is a
matching of the simplices of K such that the corresponding modified Hasse
diagram, H(M), is acyclic. We will denote the matching as M = (A, w :
Q → K), where A, Q and K partition the simplices of K and w : Q → K
is a bijection. A denotes the critical simplices, Q denotes simplices matched
with a higher dimensional simplex and K denotes simplices matched with a
lower dimensional simplex. Finally, w : Q → K indicates how simplices from
Q are matched with simplices from K.
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Before proceeding, we state the following lemma regarding the type of
cycle that can prevent a matching from being a valid Morse matching. This
will be useful when we prove that computing optimal Morse matchings is
NP -hard.

Lemma 6.19. Any cycle in the modified Hasse diagram corresponding to a
matching will occur only between i and i+ 1 dimensional simplices.

Proof. This follows immediately from the fact that a given simplex can only
be matched with at most one other simplex. There is therefore no way of
moving up two dimensions in the modified Hasse diagram.

If we consider the empty simplex as an immediate face of each vertex,
we have the following theorem. Note that allowing the empty simplex to be
matched corresponds to considering so called reduced homology.

Theorem 6.20. [18] Let M be a complete Morse matching of the Hasse
diagram of K, then K is collapsible.

6.7 Discrete Morse Complexes

We will now see how we can use discrete Morse Theory to calculate the
homology of a simplicial complex.

Let K be a simplicial complex with Morse function f . Let Cp(K) denote
the p’th chain group, and Mp ⊂ Cp(K) the span of the critical p-simplices.
Then we can obtain the following theorem.

Theorem 6.21. [18] There are boundary maps δ̃d : Md →Md−1, for each
d such that

δ̃d−1 ◦ δ̃d = 0

and such that the resulting chain complex

0→Mn →δ̃n Mn−1 → . . .→δ̃1 M0 → 0 (2)

calculates the homology of K. That is, if we define

Hd(M, δ̃) =
Ker(δ̃d)

Im(δ̃d+1)

then for each d
Hd(M, δ̃) ∼= Hd(K).

48



Figure 18: β and α are critical simplices. The gradient path from the edge of
β to α induces the indicated orientation on α. The edge shared by β and the
neighboring triangle inherits its orientation from β. This in turns induces
the clockwise orientation on the neighboring triangle. This process continued
along the gradient path gives α its orientation.

Once we have explicitly defined the boundary operators, this Morse com-
plex provides an explicit complex, whereas the main Theorem of discrete
Morse theory only ensured existence. The boundary operators of the Morse
complex can be explicitly computed from the gradient paths of the corre-
sponding Morse function.

We first note that given a gradient path from a face of a simplex β to a
simplex α, the orientation of β induces an orientation on α by defining an
orientation on each neighbor along the gradient path. See Figure 18 for an
example of this induced orientation.

We can now state the formula for the boundary operators.

Theorem 6.22. [18] Choose an orientation for each simplex of K. Then
for any critical (p+ 1)-simplex β set

δ̃β =
∑

critical α(p)

cα,βα (3)

where
cα,β =

∑
γ∈Γ(β,α)

m(γ)

where Γ(β, α) is the set of gradient paths which go from an immediate face of
β to α. The multiplicity m(γ) of any gradient path γ is equal to ±1, depending
on whether given γ, the orientation on β induces the chosen orientation on
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α, or the opposite orientation. With this differential, the complex in Theorem
6.21 computes the homology of K.

Example 6.23. To give a brief example of how to explicitly compute bound-
aries using Theorem 6.22, consider Figure 18. We first note that there is
exactly one unique gradient path γ from an edge of β to α. Suppose that the
orientation of the simplex α is upwards, then since the induced orientation
is the same, m(γ) = 1, and cα,β = 1. Suppose that the orientation of α is
downwards, then we have m(γ) = −1, and cα,β = −1.

Discrete Morse theory therefore provides us a tool to efficiently compute
homology. If we are given a simplicial complex, we first try to find a good
Morse function, and then calculate homology for the reduced Morse complex
derived from this. Here, a good Morse function is as stated earlier one with
as few critical simplices as possible, as these define the size of the reduced
complex. Furthermore, since we only need the gradient paths, it is sufficient
to compute a suitable Morse matching, rather than an explicit Morse func-
tion. For large simplicial complexes discrete Morse theory therefore has the
potential to greatly speed up the computation of homology, provided good
Morse functions or matchings can be found efficiently.

6.7.1 Example

We will here give an example to underline the importance of constructing
good discrete Morse matchings and to give a simple example of a Morse
complex. The triangulation bing, taken from the Lutz and Benedetti library
of triangulations [4], is a triangulation of the 3-ball. The three heuristic
strategies, along with experimental comparisons, will be explained in Sec-
tion 7.

face vector naive heuristic collapse heuristic Simulated annealing

(480, 2511, 3586, 1554) 605 3 1

From the above table we see that we started out with a triangulation with
8131 simplices. Even using naive heuristics we obtain only 605 critical sim-
plices. For the collapse heuristic however, we obtain only 3 critical simplices,
while we obtain only 1 critical simplex using simulated annealing. As we
have seen above, the number of critical simplices determines the size of the
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resulting Morse complex. Given that our homology computation algorithms
have roughly cubic running times in the size of the input complex, the bene-
fits of preprocessing using discrete Morse theory are therefore huge. We also
see that the difference between the naive heuristics and the collapse heuristic
are dramatic, and that the strategy used for computing Morse matchings is
therefore of central importance in making discrete Morse theory useful for
the computation of homology. Finally, we note that for this example, we
were able to obtain a Morse matching with only one critical simplex. This
corresponds to a Morse complex consisting of only one cell, and we therefore
obtain the homology groups of the triangulation immediately. Denoting the
simplicial complex bing by K, we obtain

H0(K) = Z

and
Hn(K) = 0

for n 6= 0.

6.8 Discrete Morse Theory and Persistence

With Theorem 6.21 we have established that discrete Morse theory can be
used to preprocess homology computation by reducing the size of the com-
plex. We wish to extend this theory so that we can preprocess the computa-
tion of persistent homology too. Since we have so far only developed discrete
Morse theory for simplicial complexes, rather than filtrations of simplicial
complexes, we might worry that in simplifying the simplicial complexes, even
though we preserve the homology of the individual complexes, we may not
preserve their persistent homology. Luckily the extension of a Morse match-
ing of a simplicial complex to one on a filtration which preserves persistent
homology is relatively simple.

Recall that a Morse matching on a simplicial complex K is an acyclic
matching of the modified Hasse diagram of K.

Definition 6.24. A filtered Morse matching on a filtration

∅ ⊂ K0 ⊂ . . . ⊂ KN = K

consists of a Morse matching Mn = (An, wn : Qn → Kn) on each Kn with
the following additional requirements

51



• An ⊂ An+1, Qn ⊂ Qn+1, Kn ⊂ Kn+1

• wn = wn+1
|Qn

We denote the final Morse matching

(AN , wN : QN → KN)

by
(A, w : Q → K)

and let M, δ̃ be the corresponding Morse complex. Mischaikow and Nanda
proved the two following results that ensure that we can use a filtered Morse
matching to compute persistent homology [29].

Proposition 6.25. [29] The critical simplices of a filtered Morse matching
define a filtration of the Morse complex M, δ̃.

∅ ⊂ A0 ⊂ . . . ... . . .AN = A =M

Theorem 6.26. [29] Let

∅ ⊂ K0 ⊂ K1 ⊂ . . . ⊂ KN = K,

be a filtration of a simplicial complex K with filtered Morse matching

(An, wn : Qn → Kn),

and let M, δ̃ be the corresponding Morse complex with filtration

∅ ⊂ A0 ⊂ . . . ... . . .AN = A =M

then for all k, l and p we have

H l,p
k (K l) ∼= H l,p

k (Al)

Our definition of a filtered Morse matching requires that if we match
two simplices α and w(α), they must both appear in the filtration for the
first time in the same complex Kn. In light of this, we can see that we
can compute a filtered Morse matching by computing a Morse matching on
KN with the additional requirement that we don’t match simplices whose
birth times in the filtration differ, and then restrict the Morse matching to
each complex in the filtration. This concludes our section on discrete Morse
theory, we have seen that discrete Morse theory can be used to reduce the
size of complexes while preserving homology and persistent homology. We
will now look at how to actually compute the necessary Morse matchings.
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7 Computing Morse Matchings

We have seen in the previous sections why computing homology is interesting,
why we would like to be able to do it faster and the theory of how discrete
Morse theory can be used to preprocess homology and persistent homology
computation. With respect to persistent homology, recall that for a simplicial
complex with a filtration, a Morse matching which respects the birth times
of the simplices in the filtration, can be restricted on the subcomplexes of
the filtration to obtain a filtered Morse matching. For both homology and
persistent homology, we therefore regard our primary goal simply to compute
good Morse matchings on simplicial complexes. This will then determine how
effectively discrete Morse theory can be applied to preprocessing homology
and persistent homology computations.

We start by showing that the problem of finding optimal Morse matchings
is NP -hard in Section 7.2. We then provide an integer programming formu-
lation for the problem, and describe a branch and cut algorithm for solving it
in Section 7.3. Since this cannot solve large instances of the problem we turn
to heuristic solutions and optimal algorithms for special cases. We begin by
introducing some naive heuristic approaches in Section 7.4, before providing
an optimal algorithm for the special case where the simplicial complex is the
triangulation of a compact surface in Section 7.5. In Sections 7.6 and 7.7 we
introduce two state of the art heuristics.

Section 7.9 provides a new simulated annealing based approach which
outperforms the two state of the art heuristics mentioned earlier for many
problem instances.

Finally, experimental results comparing the performances of some of the
heuristics are provided in Section 7.10. Heuristics are usually compared
experimentally in terms of their running times and the qualities of their
solutions [35]. Since the homology computations with currently available
hardware and algorithms are often intractable for sufficiently large complexes,
our emphasis will be mainly on the quality of solution obtained.

7.1 Optimal Morse Matchings

Recall that a Morse matching of a simplicial complex K is a matching of
the simplices of K such that the corresponding modified Hasse diagram is
acyclic. An optimal Morse matching is then a Morse matching with the
minimum number of critical simplices. As we have seen in the preceding
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sections, this notion of optimality is justified by the fact that the number of
critical simplices determines the size of the Morse complex and the tightness
of the Morse inequalities.

Before proving the hardness of finding optimal Morse matchings, we will
introduce an optimal algorithm for a special case that will be needed in the
proof.

Let c(M) be the number of critical simplices in a simplicial complex with
Morse matching M , and ci(M) the number of critical simplices of dimension
i.

Theorem 7.1. We can compute an optimal Morse matching M for a con-
nected simplicial complex S of dimension 1 in time linear in the size of the
complex. For this matching, c0(M) = 1.

Proof. A simplicial complex of dimension 1 is simply a graph. We can there-
fore find a spanning tree of S in linear time using, for example, depth first
search. Direct all the edges away from some vertex v of the spanning tree.
The resulting directed subgraph on the spanning tree is clearly acyclic and
the Morse matching obtained by matching each edge of the spanning tree
with the vertex it points towards is optimal.

To see that it is optimal, we note that there is only one critical vertex,
the vertex v, and since the weak Morse inequalities provide the bound b0 ≤
c0(M), the optimality follows from the fact that b0 = 1.

Alternatively we can show that the matching is optimal by noting that if
there are no critical 0-simplices the modified Hasse diagram must contain a
cycle, since otherwise it would contain an infinite path.

Since we can process each connected component of S separately, we im-
mediately obtain the following corollary.

Corollary 7.2. We can compute an optimal Morse matching for a simplicial
complex S of dimension 1 in time linear in the size of the complex.

7.2 Hardness of Optimal Morse Matchings

We wish to show that for a simplicial complex S and a nonnegative integer
k, it is NP -complete to decide whether there exists a Morse matching with
at most k critical simplices. The standard way of showing that a problem
is NP -complete is to show that it is in NP , and then to demonstrate a
polynomial-time reduction from an NP -complete problem to it.
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Egecioglu and Gonzalez proved that the following collapsibility problem
is NP -complete [15] and this will the problem we use for our reduction. This
approach is due to Joswig and Pfetsch [22].

Theorem 7.3. [15] Given a connected, pure 2-dimensional simplicial com-
plex S which is embeddable in R3, and a nonnegative integer k, it is NP -
complete to decide whether there exists a subset K of the facets of S with
|K| ≤ k, such that there exists a sequence of simplicial collapses which trans-
forms S \K to a 1-dimensional complex.

Recalling Lemmas 6.4 and 6.4, the collapsibility problem can be restated
in the language of discrete Morse theory.

Corollary 7.4. [15] Given a connected pure 2-dimensional simplicial com-
plex S which is embeddable in R3, and a nonnegative integer k, it is NP -
complete to decide whether there exists a Morse matching with at most k
critical 2-faces.

We wish to obtain a polynomial time computable transformation between
the problem of deciding if there exists a Morse matching with at most k crit-
ical 2-simplices and the problem of deciding if there exist a Morse matching
with at most c critical simplices in total. This transformation must satisfy
that there exists a Morse matching with at most k critical 2-simplices if and
only if there exists a Morse matching with at most c critical simplices in
total.

Before proceeding, we need the following construction. Given a Morse
matching M on a simplicial complex S, such that the dimension of S is
greater than or equal to 1, let Γ(M) be the graph obtained from the graph
of S by removing all 1-simplices matched with 2-simplices.

To illustate this definition, we return to our standard example. Consider
the triangle with an optimal Morse matching, illustrated in Figure 16, Γ(M)
consists of two edges connecting the three vertices.

Lemma 7.5. [22] Given a connected simplicial complex S and some Morse
matching M , the graph Γ(M) is connected and contains all the vertices of S.

Proof. The fact that Γ(M) contains all the vertices of S is clear since it was
obtained by removing only edges from the graph of S.

In order to see that Γ(M) is connected, we first note that if the dimension
of S is smaller than 2, there are no 2-simplices. Hence Γ(M) is just the graph
of S, and is therefore connected by assumption.
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Suppose now that the dimension of S is greater than or equal to 2 and
that Γ(M) is disconnected. Then we let N be the set of vertices in one of the
connected components of Γ(M) and let C be the set of 1-simplices with one
incident vertex in N , and one outside N . These 1-simplices can be regarded
as the cut edges of the partition (S − N,N) of S. Since we assumed S to
be connected, C must contain at least one 1-simplex. Furthermore, by the
definition of Γ(M) each 1-simplex of C is matched to a unique 2-simplex by
the Morse matching M .

Let D be the subgraph of the modified Hasse diagram of S, which we
will denote H(M), consisting of the 1-simplices in C and their matched 2-
simplices. We will construct a directed path in D starting at the node of
D corresponding to some 1-simplex e1 in C. Since e1 ∈ C, it is matched
to a 2-simplex f1, and we have an edge going from e1 to f1 in D. Since f1

is a 2-simplex with at least one vertex in C and at least one vertex not in
C, there must be a second 1-simplex, denoted e2, with one incident vertex
in N , and one outside N . We can therefore go from f1 to e2 in D. Since
e2 is matched with a unique 2-simplex, this process can be continued and
we obtain the directed path e1, f1, e2, f2, . . . in D. Since we have defined a
simplicial complex to be finite, we can’t keep visiting new vertices of D, so we
must visit a vertex of D that we have already visited at some point. Thus D
contains a directed cycle, and we can therefore conclude that H(M) contains
a directed cycle. This is a contradiction since our assumption that M is a
Morse matching implies that the modified Hasse diagram is acyclic. We can
therefore conclude that Γ(M) is connected.

We can use Γ(M) to obtain the following corollary.

Corollary 7.6. [22] Let S be a connected simplicial complex with Morse
matching M . Then we can compute a Morse matching M ′ on S in polynomial
time, such that c(M ′) ≤ c(M). Furthermore, M ′ is optimal on Γ(M) with
exactly one critical vertex, and the number of critical simplices of dimension
2 or higher is the same as for M .

Proof. We begin by using Theorem 7.1 to compute an optimal Morse match-
ing MΓ(M) on Γ(M) in polynomial time. We now construct a new matching
M ′ by setting it equal to MΓ(M) on Γ(M) and equal to M on the rest of
S. M and MΓ(M) are valid Morse matchings, and MΓ(M) only contributes
matchings to M ′ between dimension 0 and dimension 1, whereas M doesn’t
contribute matchings between dimension 0 and dimension 1, the fact that M ′
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is acyclic, and therefore a Morse matching follows from Lemma 6.19 which
states that cycles in the modified Hasse diagram only occur between two
adjacent dimensions.

We are now in a position to prove the NP -completeness of the Morse
matching decision problem.

Theorem 7.7. [22] Given a simplicial complex S and a nonnegative integer
c, it is NP -complete to decide whether there exists a Morse matching with
at most c critical simplices. This holds even if S is connected, pure, 2-
dimensional and embeddable in R3.

Proof. It’s clear that the problem is in NP .
Let S be a connected, pure, 2-dimensional simplicial complex embeddable

in R3.
For k any non-negative integer, we wish to show that there exists a Morse

matching with at most k critical 2-simplices if and only if there exist a Morse
matching with at most g(k) = 2(k+1)−χ(S) critical simplices in total. Since
the Euler characteristic, χ(S) can be computed in polynomial time, for exam-
ple by using Theorem 6.11 on a trivial Morse matching, g is a polynomial-time
computable function and the result will therefore follow from Corollary 7.4.

Suppose therefore that M is a Morse matching on S with at most k critical
2-simplices. Then by Corollary 7.6 we can compute a Morse matching M ′ in
polynomial time such that

c0(M ′) = 1, c2(M ′) = c2(M) and c(M ′) ≤ c(M).

Since S is 2-dimensional we note that

c(M ′) = c0(M ′) + c1(M ′) + c2(M ′)

and by Theorem 6.11 we obtain

c1(M ′) = c0(M ′) + c2(M ′)− χ(S) = 1 + c2(M ′)− χ(S).

Combining our 3 above sets of equalities, we see that

k ≥ c2(M) = c2(M ′) =
1

2
(c(M ′) + χ(S))− 1

and therefore that M ′ has at most 2(k+ 1)−χ(S) critical simplices in total,
which is what we wanted to show.
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Conversely, suppose that there exists a Morse matching M with at most
g(k) critical simplices in total. We can again use Corollary 7.6 to obtain a
Morse matching M ′ such that c0(M ′) = 1, c2(M ′) = c2(M) and c(M ′) ≤
c(M). We can then again obtain

c2(M) = c2(M ′) =
1

2
(c(M ′) + χ(S))− 1

Substituting in the fact that c(M ′) ≤ c(M) ≤ g(k), we obtain

c2(M) = c2(M ′) ≤ 1

2
(g(k) + χ(S))− 1

≤ 1

2
(2(k + 1)− χ(S) + χ(S))− 1

≤ k

Thus we have shown that the decision version of our problem is NP -
complete, and this in turn implies that the optimization problem is NP -hard
too.

In [15] it was proven that unless P = NP , there is no constant-ratio
polynomial-time approximation algorithm for the optimization version of the
collapsibility problem that we used for our reduction. Since the function g
used in our proof is not approximation preserving, the question of whether
there exists a constant-ratio polynomial-time approximation algorithm for
computing Morse matchings is still open.

7.3 Joswig and Pfetsch

Joswig and Pfetsch provided the first non-trivial algorithm for solving the
problem of finding optimal Morse matchings for general simplicial complexes.
They formulated the problem as an integer linear program [22].

7.3.1 Integer Programming Formulation

We begin by noting that the problem of finding an optimal Morse matching
for a simplicial complex K is the same as the problem of finding a Morse
matching of maximal cardinality. Joswig and Pfetsch formulated this prob-
lem as selecting a maximal cardinality subset of the edges in the Hasse di-
agram of K, such that the edges correspond to a matching of the simplices
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of K, and that this matching does not result in any directed cycles in the
modified Hasse diagram of K. Together these 2 sets of constraints ensure
that we find a maximum cardinality valid Morse matching.

Before giving the integer programming formulation, we need to introduce
some notation. Until now we have only referred to the Hasse diagram of a
simplicial complex as being directed, it will now be beneficial to also consider
the undirected Hasse diagram. We denote by A the arc set of the undirected
Hasse diagram H of the simplicial complex K and let x = (x0, . . . , x|A|) ∈
{0, 1}|A| be a vector such that each xi represents an arc in the Hasse diagram.
If xi = 0, this corresponds to not matching the endpoints of xi and if xi = 1,
the endpoints are matched. Let I be an index set, then we define x(I) =∑

i∈I xi. For a vertex v in the Hasse diagram, we denote by δ(v) the arcs
incident to v.

Then x is a matching of the simplices of K if and only if x(δ(v)) ≤ 1 for
all v ∈ H, since this constraint ensures precisely that we don’t attempt to
match any one simplex with more than one other simplex.

We say that all the vertices of the Hasse diagram which correspond to
simplices of dimension i are on the i’th level of the Hasse diagram. Denote
by Ci the set of cycles between levels i and i + 1 in the undirected Hasse
diagram. According to Lemma 6.19 these are the only cycles that can exist
in the modified directed Hasse diagram. Furthermore, given that a directed
cycle in the modified Hasse diagram has to alternate between simplices of
dimension i and i + 1, half the edges must go up, and we therefore see that
if for every cycle c ∈ Ci, we choose fewer than half the edges, the modified
Hasse diagram will be acyclic. Conversely, if the modified Hasse diagram is
acyclic, there would exist some undirected cycle for which at least half the
edges had been chosen. We therefore obtain the constraints x(c) ≤ 1

2
|c| − 1

for all c ∈ Ci and i = 0, . . . , d− 1, where d is the dimension of K.
Combining the constraints, we see that x ∈ {0, 1}|A| satisfies the following

integer linear program if and only if it corresponds to a valid Morse matching.

max. 1Tx

s.t. x(δ(v)) ≤ 1 for all v ∈ H

x(c) ≤ 1

2
|c| − 1 for all c ∈ Ci, i = 0, . . . , d− 1

x ∈ {0, 1}|A|
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It is important to recall that this optimization problem is NP -hard. Fur-
thermore the number of constraints required to ensure acyclicity is exponen-
tial in the size of the complex.

7.3.2 Branch and Cut

Joswig and Pfetsch used a branch and cut algorithm to solve this problem.
We will here give a brief introduction to branch and bound, and branch and
cut methods. For an in depth description, see [38].

Suppose that we wish to maximize an objective function f(x) for x ∈ S,
where S is the set of feasible solutions. In the above integer programming
formulation, the objective function is to maximize the cardinality of a subset
of the edges in the Hasse diagram of K, and the feasible set S is defined by
the constraints ensuring that the subset of edges is a valid Morse matching.
In branch and bound we decompose S into subsets Si, such that

S = S1 ∪ . . . ∪ SN

We can then attempt to compute upper and lower bounds for the objective
function value on S and the sets Si. A lower bound is usually found by
finding a feasible solution, while upper bounds can be found by solving a
relaxation of the original problem. We can then process a subset Si by either
solving it to optimality, or by obtaining an upper bound on Si which is lower
than our lower bound on S. This use of bounds to process a subset Si can
allow us to eliminate subsets of the feasible set without having to fully solve
our original problem to optimality on them.

In the case of our problem, we can use branch and bound using the
bounds obtained from the linear programming relaxation of the problem, but
we still have the problem that there are an exponential number of acyclicity
constraints.

Branch and cut is an extension of branch and bound where we combine
a cutting plane algorithm with the branch and bound approach. In this
approach, instead of just solving the linear programming relaxation, we also
relax the acyclicity constraints. We therefore obtain a much smaller linear
program which can be solved more quickly. The disadvantage is that the
bounds provided by the relaxations are likely to be very poor. Assuming the
solution to the relaxed problem is infeasible, we therefore add so called cuts
each time we solve our relaxed problem. These cuts are simply constraints
violated by the obtained solution, but not by any feasible solution.

60



The advantage of branch and cut over branch and bound is therefore that
we don’t have to solve our LP relaxation for all the acyclicity constraints, but
can instead add only those constraints that are needed at a given iteration.
This comes at the cost of solving a so called separation problem for generating
the additional constraints. This separation problem is described in detail in
[22], but the basic idea is to transform the modified Hasse diagram to a
weighted graph and try to find a shortest cycle in this weighted graph. To
solve the separation problem we then have to establish if the shortest cycle
has weight greater than or equal to 1 in order to establish if a given solution
is feasible or if we must add a cut to eliminate the found cycle.

The branch and cut algorithm developed by Joswig and Pfetsch is faster
than a simple exhaustive enumeration of all the possible Morse matchings,
but it is still far too slow to be used as an effective preprocessing step for
homology computation. For example, even for a triangulation with only 392
simplices an optimal solution could not be found in a week in [22], whereas
implementations of the collapse and coreduction heuristics that will be in-
troduced in Sections 7.6 and 7.7 usually solve the problem to optimality in
less than 30 milliseconds.

It is not surprising that the Joswig and Pfetsch algorithm is inappropriate
for preprocessing simplicial complexes for the computation of homology. This
is because the computation of homology takes roughly cubic time in the size
of the complex in the worst case, whereas we have already established that
the problem of finding optimal Morse matchings is NP -hard. If we want
to be able to use discrete Morse theory effectively as a preprocessing step,
we are therefore forced to either obtain faster optimal algorithms for special
cases, fast approximation algorithms, or fast heuristic algorithms.

7.4 Naive heuristics

Potentially the easiest way of finding a Morse matching is simply to randomly
match simplices in a manner that doesn’t cause a cycle until we can’t match
any simplices without causing a cycle. One simple implemntation of this idea
would be to randomly make one pass through the simplices matching each
with one of its cofaces whenever doing so doesn’t cause a cycle. Checking for
acyclicity using depth first search can be done in linear time, but if we do this
after each iteration, we obtain a quadratic running time. Given that the early
matchings are unlikely to cause cycles we can speed up the heuristic by only
checking for acyclicity infrequently initially, and then undoing the matchings
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since the last check if a cycle is found. Implemented in this manner, the
heuristic is relatively fast. The Lewiner, collapse and coreduction heuristics
that will be introduced in subsequent sections all achieve linear running times
in part by choosing the matchings in a manner that makes it unnecessary to
check for cycles.

A few variants of this approach were implemented in Java, but unfortu-
nately they performed poorly. As well as performing poorly in practice, it
turns out that the poor performance of these heuristics based on completely
random choices is to be expected from a theoretical point of view [33].

Some brief experimental comparisons in Section 7.10 will demonstrate
that for any but the simplest of complexes, this sort of naive approach is
uncompetitive with the heuristics that will be described later in this section.

7.5 Lewiner et al

Lewiner et al developed a linear time algorithm for computing optimal Morse
matchings on triangulations of compact surfaces [25].

Specifically, they showed that for a triangulation K of a compact surface,
their linear time algorithm produces a Morse matching M with c0(M) = 1
and such that if K has no boundary, c2(M) = 1 and if K has a boundary,
c2(M) = 0.

Combining Theorems 5.7 and the weak Morse inequalities then imme-
diately proves optimality, since the the number of critical p-simplices is
bounded from below by the p’th Betti numbers.

The Lewiner algorithm relied on constructing a spanning tree on a cer-
tain graph structure created based on the input complex. Their algorithm
was later extended to a heuristic for general CW -complexes, rather than just
triangulations of compact surfaces. In [4] it was remarked that this heuris-
tic produces somewhat inconsistent results for problem instances that were
complicated. This suggests that this heuristic is perhaps not as good as
the collapse and coreduction heuristics, but an interesting interesting future
project might be to implement this heuristic and establish when the Lewiner
heuristic works well, and under what circumstances it doesn’t perform so
well.
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7.6 Benedetti and Lutz

Benedetti and Lutz designed a heuristic for testing if a simplicial complex is
collapsible, and if so, how easy it is to collapse. This heuristic turned out to
be very good at computing Morse matchings with very few critical cells [4].
We will refer to it as the collapse heuristic in this report.

The basic idea can be understood in terms of Lemmas 6.9 and 6.10. We
try to find free faces as in the proof of Lemma 6.9. If a free face is found,
delete the free face and its coface. In terms of our Morse matching, this
implicitly corresponds to matching the free face with its coface. If at any
point we can’t find a free face, we delete one of the remaining simplices of
maximum dimension and delete it. The simplices deleted in this manner
correspond to the critical simplices of our Morse matching and this step can
be understood as representing the attachment given in Lemma 6.10. We
repeat this process until every simplex has been deleted.

It is simple to verify that the resulting modified Hasse diagram is acyclic,
and therefore that the matching produced by this heuristic is a valid Morse
matching. This follows from the fact that we have only matched faces when
they were free in the remaining complex.

If we store the unprocessed simplices, the free faces and the pairs of
matched simplices we can implement this heuristic in linear time in the num-
ber of simplices for fixed dimension. Each iteration either removes one or
two simplices, and we only need to update a constant number of faces of the
simplices removed. This heuristic was implemented in Java and along with
the heuristic due to Mrozek and Batko, it will be the main heuristic with
which simulated annealing approach will be compared in Section 7.10.

While this heuristic performs very well in practice, it is simple to construct
simplicial complexes where the heuristic can be made arbitrarily likely to fail
to produce an optimal solution, see Figure 19 [4].

7.7 Mrozek and Batko

Mrozek and Batko developed a so called coreduction based method for com-
puting Morse matchings in [30]. We will in this report use a slight modifica-
tion of this method, effectively making it a reversed version of the collapse
heuristic. Thus, instead of finding free faces, we attempt to find free co-
faces, simplices which only have one face. Additionally, we delete simplices
from the bottom up, instead of from the top down as in the collapse heuristic.
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Figure 19: Since there are no free faces in the beginning, we start by deleting
an edge. There is a 1/7 chance of choosing the middle edge and obtaining
a suboptimal Morse matching. By creating a chain of vertices and edges
between vertices 1 and 4, we can make the chance of obtaining an optimal
Morse matching arbitrarily small.

We will refer to this heuristic as the coreduction heuristic.
Note that initially there can be no free cofaces in a simplicial complex,

so we always initialize this heuristic by deleting a vertex. This doesn’t cause
any problems, since there is always at least one critical vertex for any simpli-
cial complex. Similar arguments hold for the correctness and running time
of the collapse and coreduction heuristics. Like the collapse heurisitc, the
coreduction heuristic can be made arbitrarily unlikely to produce an optimal
solution on simplicial complexes as in Figure 19.

The coreduction heuristic was implemented in Java and it will be one of
the main heuristics investigated in Section 7.10. One of the main things we
can conclude from the comparisons is that the methods complement each
other, with some instances being more amenable to the collapse heuristic,
and others to the coreduction heuristic.

7.8 Other approaches

We will briefly mention some other approaches, one of which can be used to
improve other heuristics for computing Morse matchings, and one of which
produces Morse matchings, even though the theoretical basis is slightly dif-
ferent.
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7.8.1 Iteration

We noted earlier that the theory we have developed could have been extended
to finite CW-complexes rather than just simplicial complexes. Since the
Morse complex that we obtain is itself a finite CW-complex, this means that
we can iterate our methods. Instead of stopping after we have obtained
a Morse complex from our Morse matching, we can compute a new Morse
matching on the Morse complx.

This process can then be repeated until improvements stop or become too
small. Slight modifications are required to the heuristics, since for arbitrary
finite CW-complexes, we have to restrict the permitted Morse matchings,
but this only means that we have to ignore some matchings that we would
otherwise have chosen. Assuming we start with a simplicial complex, these
modifications are not needed for the first iteration, and there is therefore
no disadvantage to iterating our procedure. An example of this approach
can be found in [9]. Since it is possible, with some minor modifications, to
carry out this iterated method of computing Morse complexes for all the
above mentioned heuristics, we have not carried out this extension or made
experimental comparisons using it. It would however be an interesting future
extension of this project to see if some of the heuristics benefit more than
others from iteration.

7.8.2 Cancelling Critical Simplices

Another approach to improving Morse matchings can be obtained from the
following theorem.

Theorem 7.8. [18] Suppose M is a Morse matching on a simplicial complex
K such that β(p+1) and α(p) are critical, and there is exactly only gradient
path from the boundary of β to α. Then there exists another Morse matching
M ′ with the same critical simplices, except that β and α are no longer critical.

The way we obtain M ′ from M is to reverse the unique gradient path
from β to α in the theorem. This could for example be applied to remove
the critical simplices in Figure 18.

7.8.3 Lexicographic Ordering

In many of the heuristics we have described, random choices are made when
choosing which simplices to match or to mark as critical. An alternative
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approach is to make choices based on a lexicographic ordering. Lexicographic
and reverse lexicographic versions of the collapse heuristic performed very
well for some problem instances, although the completely randomized version
was also superior for other instances [4]. Since implementing lexicographic
versions of the collapse and coreductions heuristics is only a small task, it
would be interesting in the future to try to investigate for what types of
complexes each method is superior.

Note that this approach can still be randomized by randomizing the vertex
numbers from which the lexicographic ordering is obtained. The theoretical
justification for this approach is given in [3, 20].

7.8.4 Engström

Finally, in [16], Engström used what he called Fourier-Morse theory to
compute a special type of Morse matching. There are complexes which are
collapsible, for which this method can not produce an optimal Morse match-
ing [4]. Some basic experimental comparisons involving this method will be
made in Section 7.10, however since Engtröm’s computations are not random-
ized, these comparisons will only be superficial. Generally the collapse and
coreduction heuristics seem to produce Morse matchings with fewer critical
simplices than Engström’s method.

7.9 Simulated Annealing

Simulated Annealing has until now not been applied to the problem of com-
puting Morse matchings. For this project simulated annealing based on the
collapse and coreduction heuristics was implemented, and experimental re-
sults suggest that this approach has potential. For several instances the
simulated annealing approach works better than the aforementioned heuris-
tics, which are two of the best currently known heuristics for the problem.
Unfortunately a bug in the the implementation of simulated annealing based
on the coreduction heuristic prevented this version from being used in the
experimental comparisons. However preliminary results suggest that it per-
forms better than the coreduction heuristic, in the same way that it will
be shown in Section 7.10 that simulated annealing based on the collapse
heuristic performed better than the collapse heuristic.

Simulated annealing is inspired by the process of annealing in metallurgy.
Suppose we have an optimization problem to minimize an objective function
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f(s), for s ∈ S, where S is the feasible set of solutions. The basic idea of
simulated annealing is to initialize a temperature parameter t and generate
an initial solution s using some heuristic, and then to iteratively replace s
with another solution s′ in the neighborhood of s. Here the concept of a
neighborhood of a solution needs to be defined for a given implementation
of simulated annealing, but the principle is to find a solution that is simi-
lar to the original solution. If f(s′) ≤ f(s), we accept s′ and continue the
process using s′. If however f(s′) > f(s), we accept s′ with a probability
p(t, f(s), f(s′), and reject it with probability 1− p(t, f(s), f(s′)). This tem-
perature parameter is reduced for each iteration, and p(t, f(s), f(s′)) declines
as t is reduced.

The idea therefore is that in the beginning, when t is still large, we are
able to explore a large part of the feasible set, and as t declines, the sim-
ulated annealing process begins to resemble a simple hill climbing method.
When some criteria for stopping the procedure are fulfilled, we terminate the
procedure and output the best solution encountered.

Simulated annealing is a widely used technique in combinatorial opti-
mization problems, and is particularly important when there are no known
efficient exact or approximation algorithms. Since this is the case for the
problem of computing optimal Morse matchings, simulated annealing was
implemented for the problem.

For this implementation, the definition of neighboring solution is that
given a matchingM , generated by either the collapse or coreduction heuristic,
we undo all the matchings made either above or below a randomly chosen
dimension. We then compute a new Morse matching M ′ such that for some
of the dimensions M and M ′ consists of the same matchings, and for the
other dimensions M and M ′ are different. This can be regarded as a very
broad type of neighboring solution, and the success of the implementation
might be improved by improving the definition of the neighborhood.

7.10 Comparison of Methods

As noted earlier, heuristics are usually compared experimentally in terms of
either their running times or the qualities of their solutions, and usually some
combination of the two factors [35]. For our purposes, the most important
factor is the quality of solution obtained, since the homology computations
with currently available hardware and algorithms are often intractable for
complexes that are too large.
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The heuristics will be tested on triangulations taken from the Benedetti
and Lutz library of triangulations, [4] and a selection of so called (m,n)-
chessboard complexes for different values of m and n. The Benedetti and
Lutz library was chosen because it contains some triangulations for which
it is relatively difficult to obtain good Morse matchings, even though the
complexes are small, and because the Engström heuristic has also been tested
on some of these triangulations. This will allow a limited comparison even
though the Engström heuristic wasn’t implemented for this project. The
chessboard complexes have been chosen because they were also tested for
the Engström heuristic, but more importantly because for larger values of m
and n their homology is unknown and an improved method of finding discrete
Morse matchings might therefore help in future attempts to compute their
homology.

We begin by comparing the performance of the best performing of the
three naive heuristic implementations to that of the collapse heuristic on a
selection of complexes. For each complex, we give its name, the number of
simplices and a lower bound on the number of critical simplices that can be
obtained. An asterisk is used to indicate that the lower bound is known to be
feasible, and therefore optimal. The below table shows for each complex and
heuristic a triple of numbers, the mean number of critical simplices obtained
over 30 iterations, the minimum number of critical simplices obtained and
the standard deviation over the 30 iterations.

complex Naive Collapse

bing (8131, 1∗) (651.4, 585, 42.11) (3, 3, 0)
rudin (215, 1∗) (16.2, 9, 3.29) (1, 1, 0)

S3-50-1033 (4232, 2∗) (386.8, 358, 15.10) (3.53, 2, 2.46)
chessboard55 (1545, 57) (173.6, 157, 8.02) (67.33, 61, 4.04)

It’s clear that the naive heuristics perform as poorly as expected and we
therefore disregard them for the rest of this section.

We will instead compare the collapse heuristic, coreduction heuristic and
Engström heuristic on those triangulations tested by Engström which are
either chessboard complexes or in the Benedetti and Lutz library. Addition-
ally we will carry out experiments for some other complexes to compare the
collapse and coreduction heuristics. For the Engström heuristic, the results
are obtained from [16], and are for a single iteration. The heuristic was later
randomized, but no results have been published with experimental results
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for the randomized version. The below table is formatted as before, but for
the Engström heuristic, we just present the value listed in [16]. In the below
table, for each row, we list an identifier of the simplicial complex, and then its
number of simplices and a lower bound on the number of critical simplices.
We then list for the collapse and coreduction heuristics a triple representing
the mean and minimum numbers of critical simplices obtained in 30 trials,
and the standard deviation. For the Engström heuristic we simply present
the value given in [16].

complex Collapse Coreduction Engström

dunce hat (49, 3∗) (3, 3, 0) (3, 3, 0) 3
poincare (392, 6∗) (6.08, 6, 0.39) (6.04, 6, 0.28) 12

rudin (215, 1∗) (1, 1, 0) (1.04, 1, 0.28) 5
chessboard33 (33, 5∗) (5, 5, 0) (5, 5, 0) 5

chessboard44 (208, 16∗) (16.08, 16, 0.39) (16, 16, 0) 18
chessboard55 (1545, 57) (67.92, 59, 4.49) (60.4, 59, 2.43) 83

chessboard66 (13326, 236) (521.44, 460, 33.21) (389.72, 348, 20.98) 470
non42colorable (5982, 2∗) (29.52, 14, 6.97) (37.8, 26, 7.49) N/A

HP2 (16383, 3∗) (5.36, 3, 3.95) (15.92, 3, 14.67) N/A

The Engström heuristic was better than the collapse heuristic for the
largest of the tested chessboard complexes, but worse for all other non-trivial
complexes, and also worse than the coreduction heuristic for all non-trivial
complexes.

We can use Welch’s t test to see that the difference in means between
the collapse and coreduction heuristics is statistically significant for the last
4 complexes in the above table. Note that Welch’s t test assumes that the
results are normally distributed for both heuristics, this assumption is not
met and a more appropriate statistical test if the differences weren’t so clear
would be a non parametric test where we compare the ranks of the results of
the heuristics, rather than the results themselves.

With respect to the collapse and coreduction heuristics, from our exper-
iments we can conclude that neither of the 2 heuristics dominates the other.
Instead each outperforms the other on some input complexes. Additionally,
in [4] it was found that for some problem instances randomized lexicographic
versions of the collapse heuristic outperformed the standard randomized ver-
sion, while again there were other complexes for which the standard ran-
domized version performed best. Similarly, while the Engström heuristic is
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dominated by the collapse heuristic, given the limited number of complexes
tested, it seems very possible that there are complexes for which the En-
gström heuristic performs better than either of the other 2 tested heuristics.
In the absence of a dominant heuristic it therefore seems potentially very
important to have a variety of the above mentioned heuristics available.

It is very likely that modifying the above heuristics with the lexicographic
and iterated modifications described in Section 7.8 would significantly im-
prove their performances for some complexes. Since these improvements
have not been implemented for this project, they couldn’t be tested, but an
obvious future extension would be to implement and test lexicographic and
iterated versions of the heuristics.

Before investigating the benefits of using simulated annealing over sim-
ply using the collapse heuristic, we note that there are only very few of the
complexes in the Benedetti and Lutz library that are candidates for improve-
ments through simulated annealing. This is because the vast majority of the
triangulations are easily solved by the collapse heuristic or too large for the
experiments to be run. We therefore need to look at those relatively small
complexes for which the heuristics produce inconsistent results. In addition
to the Benedetti and Lutz library, the chessboard complexes are also suitable,
since the collapse heuristic produces inconsistent results for these complexes
too. Unfortunately, even though the collapse and coreduction heuristics could
have been implemented in linear time in terms of the number of simplices,
the actual implementations exhibit superlinear growth, in addition some of
the larger complexes are very slow to construct. Due to time constraints, the
number of suitable complexes which could be tested for a reasonable num-
ber of iterations is therefore very limited. The candidate complexes for this
comparison are therefore only the following two complexes: non42colorable
and chessboard66.

In Figure 20 we compare the rate at which the solution qualities converge
as we increase the computation time for the collapse heuristic and simulated
annealing for the complex non42colorable. Simulated annealing is consis-
tently better, but this difference is quite small.

Finally, we compare the performance of the collapse heuristic to that of
simulated annealing based on the collapse heuristic for the suitable complexes
as in the previous tables. This comparison could only be done properly on
two complexes, while we have preliminary results on two larger complexes
that produce similar results. Preliminary results also suggest that simulated
annealing based on the coreduction heuristic for the same complexes outper-
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Figure 20

forms the coreduction heuristic. In the below table, for each row, we list an
identifier of the simplicial complex, its number of simplices, a lower bound
on the number of critical simplices, and the number of trials. We then list
for the collapse heuristic and simulated annealing a triple representing the
mean and minimum numbers of critical simplices obtained in the trials, and
the standard deviation. Each trial was allowed to run for 20 seconds for
non42colorable and 120 seconds for chessboard66.

complex Collapse Simulated Annealing

non42colorable (5982, 2∗, 30) (15.27, 10, 2.94) (13.2, 8, 2.66)
chessboard66 (13326, 236, 60) (461.27, 430, 15.81) (455.83, 416, 14.21)

We can again apply Welch’s t-test to see that the differences in means
are statistically significant for both complexes. Thus simulated annealing
outperforms the collapse heuristic for the tested complexes, but the benefits
are not large. Even though the differences are relatively small, they seem
to grow as the size of the input complexes grows. In particular limited test
runs on the (6, 7)- and (7, 7)-chessboard complexes gave larger benefits to
using simulated annealing. Unfortunately due to the above mentioned time
constraints, it was not possible to test the performance on these complexes
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repeatedly. We can therefore conclude that there is a small but clear benefit
to using simulated annealing on the 2 tested complexes. Furthermore, based
on the tests on the (6, 7)- and (7, 7)-chessboard complexes, it is very possible
that there is a larger practical benefit to using simulated annealing for larger
complexes, although more testing would be needed to verify this. As noted
earlier, the definition of a neighboring solution used in the simulated anneal-
ing implementation is quite primitive, and it seems likely that improvements
to the performance of simulated annealing could be made in this respect.
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8 My Contributions

This report has provided an overview of the theoretical justification for the
use of discrete Morse theory for the computation of homology and persis-
tent homology, and a motivation for our interest in these topics. The most
important contributions beyond this are the new simulated annealing based
methods for computing Morse matchings, and an experimental comparison
of some of the most important heuristics currently available for the com-
putation of Morse matchings. In particular this comparison showed that
simulated annealing outperforms the collapse heuristic for several problem
instances. Comparing just the collapse and coreduction heuristics, it was
found that for some problems the collapse heuristic is preferable, while for
others the coreduction heuristic performs better.

Additionally this project has resulted in the implementation in Java of an
algorithm for constructing Vietoris-Rips complexes and of algorithms for con-
structing explicit simplicial complexes allowing for experimental comparison
of computational topology algorithms. Finally several heuristics for comput-
ing, and improving, Morse matchings were implemented, including the col-
lapse and coreduction heuristics, simulated annealing based methods using
these two heuristics and the cancellation method covered in Section 7.8.2.
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9 Future Work

If we consider topological data analysis our motivation, there are several ob-
vious areas where improvements are needed to enable the robust application
of topological data analysis to large, high dimensional data sets. Recall that
our general approach to topological data analysis has two main steps, that of
approximating the topological space from which the data has been sampled,
and that of computing topological invariants for our approximation. We will
here briefly mention the main issues related to these two problems, before
restricting our attention to the main focus of this report, the attempt to
apply discrete Morse theory to the computation of homology and persistent
homology.

The success of our attempts to approximate the topological space from
which our data has been sampled can be measured in terms of three factors.
The computation speed and memory requirements of our approximations,
and how similar these approximations are to the true underlying spaces of
the data topologically. In order to improve the speed of construction of
the complexes, it seems necessary to either approximate the Vietoris-Rips
complex, or use a different type of complex. From the point of view of
memory, the commonly used tool for high dimensional problems, the Vietoris-
Rips complex is too large to compute for huge data sets. Witness complexes
have been proposed as a possible solution. It might also be possible to
apply discrete Morse theory during the construction of the complex, thus
never allowing the complex to grow dramatically in the first place. A similar
approach proposed by Zomorodian is to compute what he called the tidy
set of a simplicial complex, which can be used to efficiently compute the
homology of a Vietoris-Rips complex [40]. The problem of establishing the
accuracy of our approximations has only recently begun to be investigated
and some results are given in [34, 2].

In topological data analysis and image analysis, we are not just interested
in constructing simplicial complexes, but also other types of CW-complexes,
particularly so called cubical complexes. It would be interesting to investi-
gate what benefits and disadvantages cubical complexes have compared to
simplicial complexes for different types of applications.

Persistent homology is the most important topological invariant in topo-
logical data analysis. An extension of persistent homology known as zigzag
persistent homology has the potential to provide more topological informa-
tion, and to allow less restrictive sequences of complexes than filtrations,
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without significantly increasing the computational requirements.
We now return to the main focus of this report. The computation of

Morse matchings, with a view to their use in preprocessing homology com-
putations. An interesting extension of this project from an implementation
point of view would be the implementation of the standard algorithms for
the computation of homology and persistent homology. Even though the
running time of these algorithms is significantly determined by the size of
the input complex, this is not the only factor, and it would be interest-
ing to see to what extent Morse matchings with similar numbers of critical
simplices result in similar computation times for homology. Furthermore,
implementing these algorithms would mean that all the steps necessary for
the application of topological data analysis have been implemented. The
computation of Vietoris-Rips complexes was implemented for this project
along with the various heuristics for computing Morse matchings. The only
missing step from this point of view are algorithms for computing homology
and persistent homology.

Another interesting extension of this project would be to modify the var-
ious heuristics implemented to enable the iterated computation of Morse
matchings. This would again be interesting from the experimental side be-
cause we could see if some of the heuristics are better suited to iteration,
while it would be useful from the application point of view since it would
likely improve the number of critical simplices obtained for large complexes
significantly.

The collapse and coreduction heuristics investigated in this report could
for some problem instances be improved by replacing random choices with
choices determined by lexicographic order. It therefore seems possible that
there could also be other methods of guiding the choices that would improve
the quality of the solutions provided by these heuristics. It would also be
advantageous to reimplement them to run in linear time. In particular, this
would allow the experiments to be run for larger complexes.

The problem of computing Morse matchings is quite similar to the feed-
back arc set problem. There exist interesting approximation algorithms for
the feedback arc set problem, whereas none are yet known for computing
Morse matchings. An obvious future research area would be to try to obtain
some results related to approximating Morse matchings, either in the form
of algorithms, or proofs of hardness.

Returning to the broader field of topological data analysis, the great-
est potential bottleneck for the more wide spread application of topological
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methods in data analysis seems likely to be the difficulty of computing com-
plexes that approximate the topology of the data. It could therefore be very
interesting to investigate methods for approximating Vietoris-Rips complexes
in the future.
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