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Basic Topologytaken from [1]

1 Metric space topology

We introduce basic notions from point set topology. These notions are prerequisites for more
sophisticated topological ideas—manifolds, homeomorphism, and isotopy—introduced later to
study algorithms for topological data analysis. To a layman, the word topologyevokes visions of
“rubber-sheet topology”: the idea that if you bend and stretch a sheetof rubber, it changes shape
but always preserves the underlying structure of how it is connected toitself. Homeomorphisms
offer a rigorous way to state that an operation preserves the topology of a domain, and isotopy
offers a rigorous way to state that the domain can be deformed into a shape without ever colliding
with itself.

Topology begins with a setT of points—perhaps the points comprising thed-dimensional
Euclidean spaceRd, or perhaps the points on the surface of a volume such as a coffee mug.
We suppose that there is ametric d(p,q) that specifies the scalardistancebetween every pair of
pointsp,q ∈ T. In the Euclidean spaceRd we choose the Euclidean distance. On the surface of
the coffee mug, we could choose the Euclidean distance too; alternatively, we couldchoose the
geodesic distance, namely the length of the shortest path fromp to q on the mug’s surface.

Let us briefly review the Euclidean metric. We write points inRd as p = (p1, p2, . . . , pd),
where eachpi is a real-valuedcoordinate. TheEuclidean inner productof two pointsp,q ∈ Rd is
〈p,q〉 =

∑d
i=1 piqi . TheEuclidean normof a pointp ∈ Rd is ‖p‖ = 〈p, p〉1/2 =

(∑d
i=1 p2

i

)1/2, and

theEuclidean distancebetween two pointsp,q ∈ Rd is d(p,q) = ‖p − q‖ =
(∑d

i=1(pi − qi)2)1/2.
We also use the notationd(·, ·) to express minimum distances between point setsP,Q ⊆ T,

d(p,Q) = inf {d(p,q) : q ∈ Q} and

d(P,Q) = inf {d(p,q) : p ∈ P,q ∈ Q}.

The heart of topology is the question of what it means for a set of points—say, a squiggle
drawn on a piece of paper—to beconnected. After all, two distinct points cannot be adjacent to
each other; they can only be connected to another by an uncountably infinite bunch of intermediate
points. Topologists solve that mystery with the idea oflimit points.

Definition 1 (limit point). Let Q ⊆ T be a point set. A pointp ∈ T is a limit point of Q, also
known as anaccumulation pointof Q, if for every real numberǫ > 0, however tiny,Q contains a
pointq , p such that thatd(p,q) < ǫ.

In other words, there is an infinite sequence of points inQ that get successively closer and
closer top—without actually beingp—and get arbitrarily close. Stated succinctly,d(p,Q\{p}) =
0. Observe that it doesn’t matter whetherp ∈ Q or not.

Definition 2 (connected). Let Q ⊆ T be a point set. Imagine coloring every point inQ either red
or blue.Q is disconnectedif there exists a coloring having at least one red point and at least one
blue point, wherein no red point is a limit point of the blue points, and no blue point is a limit
point of the red points. A disconnected point set appears at left in Figure 1. If no such coloring
exists,Q is connected, like the point set at right in Figure 1.
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Figure 1: The disconnected point set at left can be partitioned into two connected subsets, which
are colored differently here. The point set at right is connected. The dark point at its center is a
limit point of the lightly colored points.
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Figure 2: Closed, open, and relatively open point sets in the plane. Dashed edges and open circles
indicate points missing from the point set.

We frequently distinguish between closed and open point sets. Informally,a triangle in the
plane isclosedif it contains all the points on its edges, andopenif it excludes all the points on its
edges, as illustrated in Figure 2. The idea can be formally extended to any point set.

Definition 3 (closure; closed; open). Theclosureof a point setQ ⊆ T, denoted ClQ, is the set
containing every point inQ and every limit point ofQ. A point setQ is closedif Q = Cl Q, i.e.Q
contains all its limit points. Thecomplementof a point setQ is T \ Q. A point setQ is openif its
complement is closed, i.e.T \ Q = Cl (T \ Q).

For example, let (0,1) denote anopen intervalon the real number line—the set containing
everyr ∈ R such thatr > 0 andr < 1—and let [0,1] denote aclosed interval(0,1)∪{0}∪{1}. The
numbers zero and one are both limit points of the open interval, so Cl (0,1) = [0,1] = Cl [0,1].
Therefore, [0,1] is closed and (0,1) is not. The numbers zero and one are also limit points of the
complement of the closed interval,R \ [0,1], so (0,1) is open, but [0,1] is not.

The terminology is misleading because “closed” and “open” are not opposites. In every
nonempty metric spaceT, there are at least two point sets that are both closed and open:∅ andT.
The interval (0,1] on the real number line is neither open nor closed.

The definition ofopen sethides a subtlety that often misleads newcomers to point set topol-
ogy: a triangleτ that is missing the points on its edges, and therefore is open in the two-
dimensional metric space aff τ, is not open in the metric spaceR3. Every point inτ is a limit
point ofR3 \ τ, because we can find sequences of points that approachτ from the side. In recog-
nition of this quirk, a simplexσ ⊂ Rd is said to berelatively openif it is open relative to its affine
hull.

Informally, the boundary of a point setQ is the set of points whereQ meets its complement
T\Q. The interior ofQ contains all the other points ofQ. Limit points provide formal definitions.
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Definition 4 (boundary; interior). The boundaryof a point setQ in a metric spaceT, denoted
BdQ, is the intersection of the closures ofQ and its complement; i.e. BdQ = Cl Q∩ Cl (T \ Q).
The interior of Q, denoted IntQ, is Q \ BdQ = Q \ Cl (T \ Q).

For example, Bd [0,1] = {0,1} = Bd (0,1) and Int [0,1] = (0,1) = Int (0,1). The boundary
of a triangle (closed or open) in the Euclidean plane is the union of the triangle’s three edges, and
its interior is an open triangle, illustrated in Figure 2. The termsboundaryandinterior have the
same misleading subtlety as open sets: the boundary of a triangle embedded inR

3 is the whole
triangle, and its interior is the empty set. Hence the following terms.

Definition 5 (relative boundary; relative interior). Therelative boundaryof a convex polyhedron
C ⊂ Rd is its boundary with respect to the metric space of its affine hull—that is, ClC∩Cl ((affC)\
C). Therelative interiorof C is C minus its relative boundary.

Again, we often abuse terminology by writing “boundary” for relative boundary and “interior”
for relative interior. The same subtlety arises with curved ridges and surface patches, but these
have fundamentally different definitions of “boundary” and “interior,” which we give in Section4.

Definition 6 (bounded; compact). Thediameterof a point setQ is supp,q∈Q d(p,q). The setQ is
boundedif its diameter is finite, orunboundedif its diameter is infinite. A point setQ in a metric
space iscompactif it is closed and bounded.

As we have defined them, simplices and polyhedra are bounded. We may have unbounded
polyhedra, which arise in Voronoi diagrams. Besides simplices and polyhedra, the point sets we
use most are balls.

Definition 7 (Euclidean ball). In Rd, the Euclidean d-ballwith centerc and radiusr, denoted
B(c, r), is the point setB(c, r) = {p ∈ Rd : d(p, c) ≤ r}. A 1-ball is an edge, and a 2-ball is called
a disk. A unit ball is a ball with radius 1. The boundary of thed-ball is called theEuclidean
(d − 1)-sphereand denotedS(c, r) = {p ∈ Rd : d(p, c) = r}. For example, a circle is a 1-sphere,
and a layman’s “sphere” inR3 is a 2-sphere. If we remove the boundary from a ball, we have the
open Euclidean d-ball Bo(c, r) = {p ∈ Rd : d(p, c) < r}.

The foregoing text introduces point set topology in terms of metric spaces.Surprisingly,
it is possible to define all the same concepts without the use of a metric, point coordinates, or
any scalar values at all. Section 2 discussestopological spaces, a mathematical abstraction for
representing the topology of a point set while excluding all information that isnot topologically
essential.

2 Topology sans metric

In Section 1, we state that the heart of topology is to ask what it means for a set of points to
be connected, and we answer that question with the concept of limit points in metric spaces.
Topological spaces provide a way to describe the topology of a point setwithout a metric or point
coordinates, so they are more abstract but more general than metric spaces. In a topological space,
points are abstract entities that might have no characteristics except that they can be distinguished
from one other. However, topological spaces remain founded on the concept of limit points. In
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place of a metric, we encode the connectedness of a point set by supplying a list of all of the open
sets. This list is called asystemof subsets of the point set. The point set and its system together
describe a topological space.

Definition 8 (topological space). A topological spaceis a point setT endowed with asystem of
subsets T, which is a set of subsets ofT that satisfies the following conditions.

• ∅,T ∈ T.

• For everyU ⊆ T, the union of the subsets inU is in T.

• For every finiteU ⊆ T, the common intersection of the subsets inU is in T.

The systemT is called atopologyon T. The sets inT are called theopen setsin T. A
neighborhoodof a pointp ∈ T is an open set containingp.

The axioms of Definition 8 may seem puzzling; we will not use them explicitly. Mathemati-
cians have found them to be a simple and general set of rules from which one can derive most of
the topological concepts one expects from familiarity with metric space topology.

Topological spaces may seem baffling from a computational point of view, because a point set
with an interesting topology has uncountably infinitely many open sets containinguncountably
infinitely many points. But from a mathematical point of view, topological spaces are attractive
because they exclude information that is not topologically essential. For instance, the act of
stretching a rubber sheet changes the distances between points and thereby changes the metric,
but it does not change the open sets or the topology of the rubber sheet.

The charm of a pure topological space is that, for example, all 2-spheres are indistinguishable
from each other, so we simply call them “the 2-sphere.”

Of course, the easiest way to define a topological space is to inherit the open sets from a
metric space. For example, we can construct a topology on thed-dimensional Euclidean space
R

d by lettingT be the set of all possible open sets inRd. We can make the idea of “all possible
open sets inRd” more concrete. Every open set inRd is a union of a set of opend-balls, and vice
versa, although sometimes requiring uncountably manyd-balls. Therefore, we can letT be the
set of all possible unions of open balls. In this topology, every open ballis a neighborhood of the
point at its center.

In Section 1, we build the concepts of topology around the idea of limit points. Topological
spaces require a different definition of limit point, but with the new definition in place, concepts
that are defined in terms of limit points such as connectedness and closure extend without change
to topological spaces.

Definition 9 (limit point). Let Q ⊆ T be a point set. A pointp ∈ T is a limit point of Q if every
open set that containsp also contains a point inQ \ {p}.

Recall from Definition 3 that theclosureCl Q of a point setQ ⊆ T is the set containing every
point inQ and every limit point ofQ, and a point setQ is closedif Q = Cl Q. It is straightforward
to prove that in a topological space, thecomplementT \ Q of every open setQ ∈ T is closed, and
that ClQ is the smallest closed set containingQ.

For every point setU ⊆ T, the topologyT induces asubspace topologyon U, namely the
system of open subsetsU = {P ∩ U : P ∈ T}. The point setU endowed with the systemU is
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said to be atopological subspaceof T. The topological spaces we consider in this course are
subsets of a metric space such asRd that inherit its topology as a subspace topology. Examples of
topological subspaces are the Euclideand-ballBd, Euclideand-sphereSd, open Euclideand-ball
B

d
o, and Euclidean halfballHd, where

B
d = {x ∈ Rd : ‖x‖ ≤ 1},

S
d = {x ∈ Rd+1 : ‖x‖ = 1},

B
d
o = {x ∈ Rd : ‖x‖ < 1},

H
d = {x ∈ Rd : ‖x‖ < 1 andxd ≥ 0}.

3 Maps, homeomorphisms, and isotopies

Two topological spaces are considered to be the same if the points that comprise them are con-
nected the same way. For example, the boundary of a cube can be deformed into a sphere without
cutting or gluing it. They have the same topology. We formalize this notion of topological equal-
ity by defining a function that maps the points of one space to points of the otherand preserves
how they are connected. Specifically, the function preserves limit points.

A function from one space to another that preserves limit points is called acontinuous function
or amap.1 Continuity is just a step on the way to topological equivalence, because a continuous
function can map many points to a single point in the target space, or map no points to a given
point in the target space. If the former does not happen—that is, if the function is injective—
the function is called anembeddingof the domain into the target space. True equivalence is
marked by ahomeomorphism, a bijective function from one space to another that possesses both
continuity and a continuous inverse, so that limit points are preserved in bothdirections.

Definition 10 (continuous function; map). Let T andU be topological spaces. A functiong :
T→ U is continuousif for every setQ ⊆ T and every limit pointp ∈ T of Q, g(p) is either a limit
point of the setg(Q) or in g(Q). Continuous functions are also calledmaps.

Definition 11 (embedding). A mapg : T→ U is anembeddingof T intoU if g is injective.

A topological space can beembeddedinto a Euclidean space by assigning coordinates to its
points such that the assignment is continuous. For example, a drawing of a square is an embedding
of S1 intoR2. Not every topological space has an embedding into a Euclidean space, or even into
a metric space—there are spaces that cannot be represented by any metric—but we will have no
need for such spaces.

A homeomorphism is an embedding whose inverse is also an embedding.

Definition 12 (homeomorphism). Let T andU be topological spaces. Ahomeomorphismis a
bijective maph : T→ U whose inverse is continuous too.

Two topological spaces arehomeomorphicif there exists a homeomorphism between them.

1There is a small caveat with this characterization: a functiong that maps a neighborhood ofx to a single point
g(x) may be continuous, but technicallyg(x) is not a limit point of itself, so in this sense a continuous function
might not preserve all limit points. This technicality does not apply to homeomorphisms because they are bijective;
homeomorphisms preserve all limit points, in both directions.
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Figure 3: Each point set in this figure is homeomorphic to the point set aboveor below it, but
not to any of the others. Open circles indicate points missing from the point set, as do the dashed
edges in the point sets fourth from the right.

Homeomorphism induces an equivalence relation among topological spaces, which is why
two homeomorphic topological spaces are calledtopologically equivalent. Figure 3 show pairs of
topological spaces that are homeomorphic. A less obvious example is that theopend-ball Bd

o is
homeomorphic to the Euclidean spaceRd, as demonstrated by the maph(x) = 1

1−‖x‖ x. The same

map shows that the halfballHd is homeomorphic to the Euclidean halfspace{x ∈ Rd : xd ≥ 0}.
A subspace of a Euclidean space is said to becompactif it is bounded and closed with respect

to the Euclidean space. Boundedness is a metric space concept; there is a purely topological
definition of compactness, which we omit. IfT andU are compact metric spaces, every bijective
map fromT to U has a continuous inverse. We will take advantage of this fact to prove that
certain functions are homeomorphisms. When two topological spaces are subspaces of the same
larger space, there is another notion of similarity that is stronger than homeomorphism, called
isotopy. If two subspaces are isotopic, one can be continuously deformed into theother so that
the deforming subspace remains always homeomorphic to its original form. For example, a cube
can be continuously deformed into a ball.

Homeomorphic subspaces are not necessarily isotopic. Consider a torusembedded inR3,
illustrated in Figure 4(a). One can embed the torus inR3 so that it is knotted, as shown in Fig-
ure 4(b). The knotted torus is homeomorphic to the standard, unknotted one. However, it is not
possible to continuously deform one to the other while keeping it embedded inR

3 and topolog-
ically unchanged. Any attempt to do so will cause the torus to pass through a state in which it
is “self-intersecting” and not a manifold. The easiest way to recognize thisfact is to look not at
the topology of the tori, but at the topology of the space around them. Although the knotted and
unknotted tori are homeomorphic, their complements are not. Therefore, weconsider both the
notion of anisotopy, in which a torus deforms continuously, and the notion of anambient isotopy,
in which not only the torus deforms; the entirety ofR3 deforms with it.

Definition 13 (isotopy). An isotopyconnecting two spacesT ⊆ Rd andU ⊆ Rd is a continuous
mapξ : T × [0,1] → Rd whereξ(T,0) = T, ξ(T,1) = U, and for everyt ∈ [0,1], ξ(·, t) is a
homeomorphism betweenT and its image{ξ(x, t) : x ∈ T}. An ambient isotopyconnectingT and
U is a mapξ : Rd × [0,1] → Rd such thatξ(·,0) is the identity function onRd, ξ(T,1) = U, and
for eacht ∈ [0,1], ξ(·, t) is a homeomorphism.

For example, the map

ξ(x, t) =
1− (1− t)‖x‖

1− ‖x‖
x
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(a) (b)

Figure 4: (a) Torus. (b) Knotted torus.

sends the opend-ball Bd
o to itself if t = 0, and to the Euclidean spaceRd if t = 1. Think of the

parametert as the time, soξ(Bd
o, t) deforms continuously from a ball at time zero toRd at time

one. Hence the opend-ball andRd are related by an isotopy.
Every ambient isotopy becomes an isotopy if its domain is restricted fromRd × [0,1] to

T × [0,1]. It is known that if two subspaces are related by an isotopy, there exists an ambient
isotopy connecting them, so the two notions are equivalent.

There is another notion of similarity among topological spaces that is weaker than homeomor-
phism, calledhomotopy equivalence. It relates spaces that can be continuously deformed to one
another but may not be homeomorphic. For example, a ball can shrink to a point, but they are not
homeomorphic; there is not even a bijective function from an infinite point set to a single point.
However, homotopy preserves some aspects of connectedness, suchas the number of connected
components and the number of holes in a space. Thus a coffee cup is homotopy equivalent to a
circle, but not to a ball or a point.

To get to homotopy equivalence, we first need the concept of homotopies, which generalize
isotopies so that homeomorphism is not required.

Definition 14 (homotopy). Let g : X → U andh : X → U be maps. Ahomotopyis a map
H : X × [0,1] → U such thatH(·,0) = g andH(·,1) = h. Two maps arehomotopicif there is a
homotopy connecting them.

For example, ifh : B3 → R3 is the identity map on a unit ball andg : B3 → R3 maps every
point in the ball to the origin, the fact thatg andh are homotopic is demonstrated by the homotopy
H(x, t) = t · h(x); henceH(B3, t) deforms continuously from a point at time zero to a ball at time
one. A key property of a homotopy is that, asH is continuous, at every timet the mapH(·, t) is
continuous.

It is more revealing to consider two maps that are not homotopic. Letg : S1 → S1 be the
identity map from the circle to itself, and leth : S1 → S1 map every point on the circle to a
single pointp ∈ S1. Although it is easy to imagine contracting a circle to a point, that image is
misleading: the mapH is constrained by the requirement that every point on the circle at every
time maps to a point on the circle. The circle can contract to a point only if we cutit somewhere,
implying thatH is not continuous.

Observe that whereas a homeomorphism is a topological relationship between two topological
spacesT andU, a homotopy or an isotopy (which is a special kind of homotopy) is a relationship
between two maps, which indirectly establishes a relationship between two topological subspaces
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Figure 5: All seven of these point sets are homotopy equivalent, because they are all deformation
retracts of the top point set.

g(X) ⊆ U and h(X) ⊆ U. That relationship is not necessarily an equivalence class, but the
following relationship is.

Definition 15 (homotopy equivalent). Two topological spacesT andU arehomotopy equivalent
if there exist mapsg : T → U andh : U → T such thath ◦ g is homotopic to the identity map
ιT : T→ T andg ◦ h is homotopic to the identity mapιU : U→ U.

Whereas homeomorphic spaces have the same dimension, homotopy equivalent spaces some-
times do not. To see that the 2-ball is homotopy equivalent to a single pointp, construct a map
h : B2 → {p} and a mapg : {p} → B2 whereg(p) is any pointq in B2. Observe thath ◦ g is the
identity map on{p}, which is trivially homotopic to itself. In the other direction,g ◦ h : B2→ B2

sends every point inB2 to q. There is a homotopy connectingg◦h to the identity mapιB2, namely
the mapH(x, t) = (1− t)q+ tx.

The definition of homotopy equivalent is somewhat mysterious. A useful intuition for under-
standing it is the fact that two spacesT andU are homotopy equivalent if and only if there exists
a third spaceX such that bothT andU aredeformation retractsof X, illustrated in Figure 5.

Definition 16 (deformation retract). Let T be a topological space, and letU ⊂ T be a subspace.
A retraction r of T toU is a map fromT toU such thatr(x) = x for everyx ∈ U. The spaceU is
a deformation retractof T if the identity map onT can be continuously deformed to a retraction
with no motion of the points already inU: specifically, there is a homotopyR : T × [0,1] → T
such thatR(·,0) is the identity map onT, R(·,1) is a retraction ofT toU, andR(x, t) = x for every
x ∈ U and everyt ∈ [0,1].

If U is a deformation retract ofT, thenT andU are homotopy equivalent. For example,
any point on a line segment (open or closed) is a deformation retract of theline segment and is
homotopy equivalent to it. The letter V is a deformation retract of the letter W, and also of a ball.
Moreover, two spaces are homotopy equivalent if they are deformation retractions of a common
space. The symbols∅,∞, and¶ (viewed as one-dimensional point sets) are deformation retracts



Notes by Tamal K. Dey, OSU 9

Figure 6: Möbius band.

of a double doughnut—a doughnut with two holes. Therefore, they are homotopy equivalent to
each other, although none of them is a deformation retract of any of the others. They are not
homotopy equivalent to X, O,⊕, ⊙, ⊚, a ball, or a coffee cup.

4 Manifolds

A manifold is a set of points that is locally connected in a particular way. A 1-manifold has
the structure of a piece of string, possibly with its ends tied in a loop, and a 2-manifold has the
structure of a piece of paper or rubber sheet that has been cut and perhaps glued along its edges—a
category that includes disks, spheres, tori, and Möbius bands.

Definition 17 (manifold). A topological spaceΣ is a k-manifold, or simply manifold, if every
point x ∈ Σ has a neighborhood homeomorphic toBk

o orHk. Thedimensionof Σ is k.

A manifold can be viewed as a purely abstract topological space, or it canbe embedded into a
metric space or a Euclidean space. Even without an embedding, every manifold can be partitioned
into boundary and interior points. Observe that these words mean very different things for a
manifold than they do for a metric space or topological space.

Definition 18 (boundary; interior). The interior IntΣ of a manifoldΣ is the set of points inΣ that
have a neighborhood homeomorphic toBk

o. TheboundaryBdΣ of Σ is the set of pointsΣ \ IntΣ.
The boundary BdΣ, if not empty, consists of the points that have a neighborhood homeomorphic
toHk. If Bd Σ is the empty set, we say thatΣ is without boundary.

A single point, a 0-ball, is a 0-manifold without boundary according to this definition. The
closed diskB2 is a 2-manifold whose interior is the open diskB2

o and whose boundary is the circle
S

1. The open diskB2
o is a 2-manifold whose interior isB2

o and whose boundary is the empty set.
This highlights an important difference between Definitions 4 and 18 of “boundary”: whenB2

o is
viewed as a point set in the spaceR2, its boundary isS1 according to Definition 4; but viewed
as a manifold, its boundary is empty according to Definition 18. The boundaryof a manifold is
alwaysincluded in the manifold.

The open diskB2
o, the Euclidean spaceR2, the sphereS2, and the torus are all connected

2-manifolds without boundary. The first two are homeomorphic to each other, but the last two
are topologically different from the others. The sphere and the torus are compact (bounded and
closed with respect toR3) whereasB2

o andR2 are not.
A 2-manifoldΣ is non-orientableif, starting from a pointp, one can walk on one side ofΣ

and end up on the opposite side ofΣ upon returning top. Otherwise,Σ is orientable. Spheres and
balls are orientable, whereas theMöbius bandin Figure 6 is a non-orientable 2-manifold.
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(a) (b)

Figure 7: (a) Removal of the bold loops opens up the torus into a topological disk. (b) Every
surface without boundary inR3 resembles a sphere or a conjunction of one or more tori.

A surfaceis a 2-manifold that is a subspace ofRd. Any compact surface without boundary in
R

3 is an orientable 2-manifold. To be non-orientable, a compact surface musthave a nonempty
boundary (like the Möbius band) or be embedded in a 4- or higher-dimensional Euclidean space.

A surface can sometimes be disconnected by removing one or moreloops (connected 1-
manifolds without boundary) from it. Thegenusof a surface isg if 2g is the maximum number of
loops that can be removed from the surface without disconnecting it; herethe loops are permitted
to intersect each other. For example, the sphere has genus zero as every loop cuts it into two
balls. The torus has genus one: a circular cut around its neck and a second circular cut around its
circumference, illustrated in Figure 7(a), allow it to unfold into a rectangle, which topologically
is a disk. A third loop would cut it into two pieces. Figure 7(b) shows a 2-manifold without
boundary of genus 2. Although a high-genus surface can have a very complex shape, all compact
2-manifolds inR3 that have the same genus and no boundary are homeomorphic to each other.

5 Smooth manifolds

A purely topological manifold has no geometry, but once embedded in a Euclidean space it may
appear smooth or creased. Here we enrich the notion of a geometric manifoldby imposing a
differential structure on it. For the rest of this chapter, we are discussing only manifolds without
boundary.

Consider a mapφ : U →W whereU andW are open sets inRk andRd, respectively. The map
φ hasd components, namelyφ(x) = (φ1(x), φ2(x), . . . , φd(x)), wherex = (x1, x2, . . . , xk) denotes
a point inRk. TheJacobianof φ at x is thed × k matrix of the first-order partial derivatives
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The mapφ is regular if its Jacobian has rankk at every point inU. The mapφ is Ci-continuous if
the ith-order partial derivatives ofφ are continuous.

The reader may be familiar withparametric surfaces, for whichU is ak-dimensionalparam-
eter spaceand its imageφ(U) in d-dimensional space is a parametric surface. Unfortunately, a
single parametric surface cannot easily represent a manifold with a complicated topology. How-
ever, for a manifold to be smooth, it suffices that each point on the manifold has a neighborhood
that looks like a smooth parametric surface.
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Definition 19 (smooth manifold). For anyi > 0, a k-manifoldΣ without boundary embedded
in Rd is Ci-smoothif for every point p ∈ Σ, there exists an open setUp ⊂ R

k, a neighborhood
Wp ⊂ R

d of p, and a mapφp : Up → Wp ∩ Σ such that (i)φp is Ci-continuous, (ii)φp is a
homeomorphism, and (iii)φp is regular. Ifk = 2, we callΣ aCi-smooth surface.

The first condition says that each map is continuously differentiable at leasti times. The
second condition requires each map to be bijective, ruling out “wrinkles” where multiple points
in U map to a single point inW. The third condition prohibits any map from having a directional
derivative of zero at any point in any direction. The first and third conditions together enforce
smoothness, and imply that there is a well-defined tangentk-flat at each point inΣ. The third
condition prohibits any map from having a directional derivative of zero at any point in any
direction. The first and third conditions together enforce smoothness, and imply that there is a
well-defined tangentk-flat at each point inΣ. The three conditions together imply that the maps
φp defined in the neighborhood of each pointp ∈ Σ overlap smoothly. There are two extremes of
smoothness. We say thatΣ is C∞-smooth if for every pointp ∈ Σ, the partial derivatives ofφp

of all orders are continuous. On the other hand,Σ is nonsmoothif Σ is a k-manifold (therefore
C0-smooth) but notC1-smooth.

Exercises

1. Let X be a point set, not necessarily finite, inRd. Prove that the following two definitions
of the convex hull ofX are equivalent.

• The set of all points that are convex combinations of the points inX.

• The intersection of all convex sets that includeX.

2. In every metric spaceT, the point sets∅ andT are both closed and open.

(a) Give an example of a metric space that has more than two sets that are bothclosed
and open, and list all of those sets.

(b) Explain the relationship between the idea of connectedness and the number of sets
that are both closed and open.

3. Prove that for every subsetX of a metric space, Cl ClX = Cl X. In other words, augmenting
a set with its limit points does not give it more limit points.
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