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Basic Topologyaken from 1)

1 Metric space topology

We introduce basic notions from point set topology. These notions arequrisites for more
sophisticated topological ideas—manifolds, homeomorphism, and isotopy—tin&ddater to
study algorithms for topological data analysis. To a layman, the word topelogies visions of
“rubber-sheet topology”: the idea that if you bend and stretch a sifieebber, it changes shape
but always preserves the underlying structure of how it is connectigseth Homeomorphisms
offer a rigorous way to state that an operation preserves the topology ohardcand isotopy
offers a rigorous way to state that the domain can be deformed into a shapetwittocolliding
with itself.

Topology begins with a sef of points—perhaps the points comprising tielimensional
Euclidean spac&Y, or perhaps the points on the surface of a volume such asfeecmug.
We suppose that there isnaetric dp, ) that specifies the scaldistancebetween every pair of
pointsp,q € T. In the Euclidean spadg® we choose the Euclidean distance. On the surface of
the cdfee mug, we could choose the Euclidean distance too; alternatively, we dwdde the
geodesic distancemamely the length of the shortest path frerto g on the mug’s surface.

Let us briefly review the Euclidean metric. We write pointsifiasp = (ps, po.. . ., Pd),
where eaclp; is a real-valuedoordinate TheEuclidean inner produadf two pointsp, g € R% is
(p,q) = Y%, pigi. TheEuclidean normof a pointp € RYis [Ipll = (p, py/? = (2, pA)"'?, and
the Euclidean distanceetween two pointp,q € RYis d(p,q) = IIp - qll = (L, (pi - 4)D)™2.
We also use the notatial(-, -) to express minimum distances between point Be@C T,

d(p.Q)
d(P.Q)

The heart of topology is the question of what it means for a set of poirdg—assquiggle
drawn on a piece of paper—to lsennected After all, two distinct points cannot be adjacent to
each other; they can only be connected to another by an uncountabitgibfinch of intermediate
points. Topologists solve that mystery with the idedimift points.

inf{d(p,q) : g € Q} and
inf{d(p,q) : pe P,qe Q}.

Definition 1 (limit point). Let Q C T be a point set. A poinp € T is alimit point of Q, also
known as araccumulation poinbf Q, if for every real numbee > 0, however tinyQ contains a
pointq # p such that thatl(p, g) < .

In other words, there is an infinite sequence of pointQithat get successively closer and
closer top—without actually beingp—and get arbitrarily close. Stated succinctlip, Q\{p}) =
0. Observe that it doesn’t matter whethee Q or not.

Definition 2 (connected) Let Q C T be a point set. Imagine coloring every pointQreither red

or blue. Q is disconnectedf there exists a coloring having at least one red point and at least one
blue point, wherein no red point is a limit point of the blue points, and no bl @a limit

point of the red points. A disconnected point set appears at left in &iulf no such coloring
exists,Q is connectedlike the point set at right in Figure 1.
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Figure 1: The disconnected point set at left can be partitioned into twoecded subsets, which
are colored dterently here. The point set at right is connected. The dark point agmi®rcis a
limit point of the lightly colored points.
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Figure 2: Closed, open, and relatively open point sets in the planeeDaslyes and open circles
indicate points missing from the point set.

We frequently distinguish between closed and open point sets. Inforradiiigngle in the
plane isclosedif it contains all the points on its edges, amenif it excludes all the points on its
edges, as illustrated in Figure 2. The idea can be formally extended to antyseb

Definition 3 (closure; closed; open)rhe closureof a point setQ C T, denoted CQ, is the set
containing every point il and every limit point 0fQ. A point setQ is closedif Q = ClQ, i.e.Q
contains all its limit points. Theomplemenof a point seQ is T \ Q. A point setQ is openif its
complement is closed, i.&.\ Q = CI(T \ Q).

For example, let (L) denote aropen intervalon the real number line—the set containing
everyr € R such that > 0 andr < 1—and let [ 1] denote alosed interva(0, 1)u{0}u{1}. The
numbers zero and one are both limit points of the open interval, sq Ol [0, 1] = CI|[O0, 1].
Therefore, [01] is closed and () is not. The numbers zero and one are also limit points of the
complement of the closed interval,\ [0, 1], so (Q1) is open, but [01] is not.

The terminology is misleading because “closed” and “open” are not degosin every
nonempty metric spack, there are at least two point sets that are both closed and OpeniT.

The interval (Q1] on the real number line is neither open nor closed.

The definition ofopen sehides a subtlety that often misleads newcomers to point set topol-
ogy: a triangler that is missing the points on its edges, and therefore is open in the two-
dimensional metric spacefa, is not open in the metric spad&. Every point int is a limit
point of R? \ 7, because we can find sequences of points that approom the side. In recog-
nition of this quirk, a simplex- c RY is said to beelatively operif it is open relative to its fiine
hull.

Informally, the boundary of a point s€l is the set of points wher® meets its complement
T\ Q. The interior ofQ contains all the other points . Limit points provide formal definitions.
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Definition 4 (boundary; interior) The boundaryof a point setQ in a metric spac&’, denoted
BdQ, is the intersection of the closures@fand its complement; i.e. B@ = CIQ N CI(T \ Q).
Theinterior of Q, denoted InQ, isQ\ BdQ =Q\ CI(T \ Q).

For example, Bd[01] = {0,1} = Bd(0,1) and Int[Q1] = (0,1) = Int(0,1). The boundary
of a triangle (closed or open) in the Euclidean plane is the union of the trianigtee edges, and
its interior is an open triangle, illustrated in Figure 2. The tebosndaryandinterior have the
same misleading subtlety as open sets: the boundary of a triangle embedtfeid ihe whole
triangle, and its interior is the empty set. Hence the following terms.

Definition 5 (relative boundary; relative interiar)rherelative boundaryf a convex polyhedron
C c RYis its boundary with respect to the metric space offiima hull—that is, CCNCl ((aff C)\
C). Therelative interiorof C is C minus its relative boundary.

Again, we often abuse terminology by writing “boundary” for relative bdary and “interior”
for relative interior. The same subtlety arises with curved ridges andcdatches, but these
have fundamentally etierent definitions of “boundary” and “interior,” which we give in Sectin

Definition 6 (bounded; compact)The diameterof a point setQ is sup, oo d(p, g). The seQ is
boundedf its diameter is finite, ounboundedf its diameter is infinite. A point se® in a metric
space icompactf it is closed and bounded.

As we have defined them, simplices and polyhedra are bounded. We mawhlaeunded
polyhedra, which arise in Voronoi diagrams. Besides simplices and polyhidg point sets we
use most are balls.

Definition 7 (Euclidean ball) In RY, the Euclidean d-ballwith centerc and radiusr, denoted
B(c.r), is the point seB(c,r) = {p e RY : d(p.c) < r}. A 1-ball is an edge, and a 2-ball is called
adisk A unit ball is a ball with radius 1. The boundary of tlieball is called theEuclidean

(d — 1)-sphereand denoted®(c,r) = {p € RY : d(p,c) = r}. For example, a circle is a 1-sphere,
and a layman'’s “sphere” iR3 is a 2-sphere. If we remove the boundary from a ball, we have the
open Euclidean d-ball &c,r) = {pe R% : d(p,¢) < r}.

The foregoing text introduces point set topology in terms of metric spaSesprisingly,
it is possible to define all the same concepts without the use of a metric, poirticates, or
any scalar values at all. Section 2 discugegmlogical spacesa mathematical abstraction for
representing the topology of a point set while excluding all information thadtigopologically
essential.

2 Topology sans metric

In Section 1, we state that the heart of topology is to ask what it means fetr & points to
be connected, and we answer that question with the concept of limit pointstiic regaces.
Topological spaces provide a way to describe the topology of a poiniittetut a metric or point
coordinates, so they are more abstract but more general than metes sjyaa topological space,
points are abstract entities that might have no characteristics excepthattinbe distinguished
from one other. However, topological spaces remain founded on tiepbof limit points. In
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place of a metric, we encode the connectedness of a point set by sgpphshof all of the open
sets. This listis called aystenof subsets of the point set. The point set and its system together
describe a topological space.

Definition 8 (topological space)A topological spacés a point sefl endowed with asystem of
subsets Twhich is a set of subsets @fthat satisfies the following conditions.

e ),TeT.
e ForeveryU C T, the union of the subsetshisinT.
e For every finiteU C T, the common intersection of the subsetdiis in T.

The systemT is called atopologyon T. The sets inT are called theopen setsn T. A
neighborhoof a pointp € T is an open set containing

The axioms of Definition 8 may seem puzzling; we will not use them explicitly. eakuti-
cians have found them to be a simple and general set of rules from wiécbam derive most of
the topological concepts one expects from familiarity with metric space topology

Topological spaces may seentliag from a computational point of view, because a point set
with an interesting topology has uncountably infinitely many open sets containicguntably
infinitely many points. But from a mathematical point of view, topological spage attractive
because they exclude information that is not topologically essential. Fonaestéhe act of
stretching a rubber sheet changes the distances between points &y ttienges the metric,
but it does not change the open sets or the topology of the rubber sheet.

The charm of a pure topological space is that, for example, all 2-sphezéndistinguishable
from each other, so we simply call them “the 2-sphere.”

Of course, the easiest way to define a topological space is to inherit gresmts from a
metric space. For example, we can construct a topology od-tlimensional Euclidean space
RY by letting T be the set of all possible open setskifi We can make the idea of “all possible
open sets ifRY” more concrete. Every open setlif is a union of a set of opedtballs, and vice
versa, although sometimes requiring uncountably ndbglls. Therefore, we can |8t be the
set of all possible unions of open balls. In this topology, every operidhalheighborhood of the
point at its center.

In Section 1, we build the concepts of topology around the idea of limit poirdpol®gical
spaces require aftierent definition of limit point, but with the new definition in place, concepts
that are defined in terms of limit points such as connectedness and clasemd without change
to topological spaces.

Definition 9 (limit point). Let Q € T be a point set. A poinp € T is alimit point of Q if every
open set that containsalso contains a point i@ \ {p}.

Recall from Definition 3 that thelosureCI Q of a point sefQ C T is the set containing every
pointin Q and every limit point ofQ, and a point sef is closedif Q = CI Q. Itis straightforward
to prove that in a topological space, ttemplement \ Q of every open se € T is closed, and
that CIQ is the smallest closed set containi@g

For every point seU C T, the topologyT induces asubspace topologgn U, namely the
system of open subsets = (PN U : P € T}. The point sefJ endowed with the systetd is
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said to be aopological subspacef T. The topological spaces we consider in this course are
subsets of a metric space suctRéghat inherit its topology as a subspace topology. Examples of
topological subspaces are the Euclidéaall B¢, Euclideand-spheres®, open Euclidean-ball

B, and Euclidean halfoalid, where

BY = {xeRY: x| <1}

s = {xeRM x| =1},

B = {xeR%: |x|< 1},

HY = {xeRY:|x|<1andxq>0}.

3 Maps, homeomorphisms, and isotopies

Two topological spaces are considered to be the same if the points thatiseitingm are con-
nected the same way. For example, the boundary of a cube can be difotana sphere without
cutting or gluing it. They have the same topology. We formalize this notion of tgpabequal-
ity by defining a function that maps the points of one space to points of the antldepreserves
how they are connected. Specifically, the function preserves limit points.

A function from one space to another that preserves limit points is catledtsnuous function
or amap?! Continuity is just a step on the way to topological equivalence, becausatiawous
function can map many points to a single point in the target space, or map ris fwangiven
point in the target space. If the former does not happen—that is, if thaifun is injective—
the function is called ammbeddingof the domain into the target space. True equivalence is
marked by ehomeomorphisira bijective function from one space to another that possesses both
continuity and a continuous inverse, so that limit points are preserved irdbetttions.

Definition 10 (continuous function; map)Let T andU be topological spaces. A functian:
T — U is continuousf for every setQ € T and every limit pointp € T of Q, g(p) is either a limit
point of the seg(Q) or in g(Q). Continuous functions are also calledps

Definition 11 (embedding) A mapg : T — U is anembeddingf T into U if g is injective.

A topological space can lEmbeddednto a Euclidean space by assigning coordinates to its
points such that the assignment is continuous. For example, a drawingudr$s an embedding
of St into R?. Not every topological space has an embedding into a Euclidean spaseminto
a metric space—there are spaces that cannot be represented by doy-imatwe will have no
need for such spaces.

A homeomorphism is an embedding whose inverse is also an embedding.

Definition 12 (homeomorphism)Let T andU be topological spaces. Aomeomorphisns a
bijective maph : T — U whose inverse is continuous too.
Two topological spaces atemmeomorphid there exists a homeomorphism between them.

1There is a small caveat with this characterization: a funagidinat maps a neighborhood &fto a single point
g(x) may be continuous, but technicalg(x) is not a limit point of itself, so in this sense a continuous function
might not preserve all limit points. This technicality does not apply to hanmphisms because they are bijective;
homeomorphisms preserve all limit points, in both directions.
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Figure 3: Each point set in this figure is homeomorphic to the point set adyovelow it, but
not to any of the others. Open circles indicate points missing from the padjratssdo the dashed
edges in the point sets fourth from the right.

~

Homeomorphism induces an equivalence relation among topological spateh is why
two homeomorphic topological spaces are caltggblogically equivalentFigure 3 show pairs of
topological spaces that are homeomorphic. A less obvious example is traiehd-ball BY is
homeomorphic to the Euclidean spa&% as demonstrated by the mhfx) = mx. The same
map shows that the halfbail® is homeomorphic to the Euclidean halfspgee RY : x4 > 0}

A subspace of a Euclidean space is said todmapacif it is bounded and closed with respect
to the Euclidean space. Boundedness is a metric space concept; thereridyatqpological
definition of compactness, which we omit.TifandU are compact metric spaces, every bijective
map fromT to U has a continuous inverse. We will take advantage of this fact to prove that
certain functions are homeomorphisms. When two topological spaceskagases of the same
larger space, there is another notion of similarity that is stronger than honmgloista, called
isotopy If two subspaces are isotopic, one can be continuously deformed intihtbeso that
the deforming subspace remains always homeomorphic to its original fomex&mple, a cube
can be continuously deformed into a ball.

Homeomorphic subspaces are not necessarily isotopic. Consider setohesided irR3,
illustrated in Figure 4(a). One can embed the toruB3rso that it is knotted, as shown in Fig-
ure 4(b). The knotted torus is homeomaorphic to the standard, unknottedHomever, it is not
possible to continuously deform one to the other while keeping it embeddetiand topolog-
ically unchanged. Any attempt to do so will cause the torus to pass througlteairs which it
is “self-intersecting” and not a manifold. The easiest way to recognizddbiss to look not at
the topology of the tori, but at the topology of the space around them. Alththegknotted and
unknotted tori are homeomorphic, their complements are not. Thereforepmgider both the
notion of anisotopy in which a torus deforms continuously, and the notion charbient isotopy
in which not only the torus deforms; the entiretyfof deforms with it.

Definition 13 (isotopy) An isotopyconnecting two spacés c R% andU ¢ RY is a continuous
mapé : T x [0,1] — RY where&(T,0) = T, &(T,1) = U, and for evenyt € [0,1], £(-,t) is a
homeomorphism betwedhand its imagedé(x, t) : x € T}. An ambient isotopgonnectindl' and
U is a mape : RY x [0,1] — RY such that(-, 0) is the identity function oY, £(T, 1) = U, and
for eacht € [0, 1], £(-, 1) is a homeomorphism.

For example, the map
1-(1-0)lxl

0 =3
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(@) (b)
Figure 4: (a) Torus. (b) Knotted torus.

sends the oped-ball BY to itself if t = 0, and to the Euclidean spa®é€ if t = 1. Think of the
parametet as the time, s@(BY,t) deforms continuously from a ball at time zeroR8 at time
one. Hence the opaihball andRY are related by an isotopy.

Every ambient isotopy becomes an isotopy if its domain is restricted &8m [0, 1] to
T x [0, 1]. It is known that if two subspaces are related by an isotopy, therésexisambient
isotopy connecting them, so the two notions are equivalent.

There is another notion of similarity among topological spaces that is weakehtmeomor-
phism, callechomotopy equivalencdt relates spaces that can be continuously deformed to one
another but may not be homeomorphic. For example, a ball can shrink iotalpg they are not
homeomorphic; there is not even a bijective function from an infinite poirtibosa single point.
However, homotopy preserves some aspects of connectednesasshehnumber of connected
components and the number of holes in a space. Thufeecoup is homotopy equivalent to a
circle, but not to a ball or a point.

To get to homotopy equivalence, we first need the concept of homotapiésh generalize
isotopies so that homeomorphism is not required.

Definition 14 (homotopy) Letg : X — U andh : X — U be maps. Ahomotopyis a map
H : X x[0,1] — U such thatH(-,0) = gandH(-,1) = h. Two maps ardhomotopidif there is a
homotopy connecting them.

For example, it : B3 — R3 is the identity map on a unit ball argl: B® — R maps every
point in the ball to the origin, the fact thgtandh are homotopic is demonstrated by the homotopy
H(x,t) = t - h(x); henceH (B3, t) deforms continuously from a point at time zero to a ball at time
one. A key property of a homotopy is that, ldss continuous, at every timethe mapH(-, t) is
continuous.

It is more revealing to consider two maps that are not homotopic.gLef® — S! be the
identity map from the circle to itself, and lét: S* — S' map every point on the circle to a
single pointp € St. Although it is easy to imagine contracting a circle to a point, that image is
misleading: the mapl is constrained by the requirement that every point on the circle at every
time maps to a point on the circle. The circle can contract to a point only if wi somewhere,
implying thatH is not continuous.

Observe that whereas a homeomorphism is a topological relationship betmempological
spaced andU, a homotopy or an isotopy (which is a special kind of homotopy) is a relatipnsh
between two maps, which indirectly establishes a relationship between twoga@bleubspaces
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Figure 5: All seven of these point sets are homotopy equivalent, bedaey are all deformation
retracts of the top point set.

g(X) € U andh(X) ¢ U. That relationship is not necessarily an equivalence class, but the
following relationship is.

Definition 15 (homotopy equivalent) Two topological space€g andU arehomotopy equivalent
if there exist mapg : T — U andh : U — T such thath o g is homotopic to the identity map
tr : T — T andgo his homotopic to the identity mag : U — U.

Whereas homeomorphic spaces have the same dimension, homotopy efspates some-
times do not. To see that the 2-ball is homotopy equivalent to a single podanstruct a map
h:B? — {p}and amam : {p} — B2 whereg(p) is any pointq in B2. Observe thah o g is the
identity map or{p}, which is trivially homotopic to itself. In the other directiogp h : B2 — B2
sends every point i8? to g. There is a homotopy connecting h to the identity mapy2, namely
the mapH(x, t) = (1 - t)g + tx.

The definition of homotopy equivalent is somewhat mysterious. A usefutioniuor under-
standing it is the fact that two spacBsandU are homotopy equivalent if and only if there exists
a third spacé& such that botf andU aredeformation retract®f X, illustrated in Figure 5.

Definition 16 (deformation retract)Let T be a topological space, and [@tc T be a subspace.
A retraction rof T to U is a map fronil to U such that(x) = x for everyx € U. The spacéJ is
adeformation retracof T if the identity map oril can be continuously deformed to a retraction
with no motion of the points already id: specifically, there is a homotopy: T x [0,1] —» T
such thaR(:, 0) is the identity map offf, R(:, 1) is a retraction off to U, andR(x, t) = x for every

x € U and evenyt € [0, 1].

If U is a deformation retract df, thenT andU are homotopy equivalent. For example,
any point on a line segment (open or closed) is a deformation retract 6héheegment and is
homotopy equivalent to it. The letter V is a deformation retract of the letter Wakso of a ball.
Moreover, two spaces are homotopy equivalent if they are deformatdicactions of a common
space. The symbols, «, ando— (viewed as one-dimensional point sets) are deformation retracts
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Figure 6: Mdbius band.

of a double doughnut—a doughnut with two holes. Therefore, they @r®topy equivalent to
each other, although none of them is a deformation retract of any of tleesotifhey are not
homotopy equivalent to X, @p, ©, ®, a ball, or a cffee cup.

4 Manifolds

A manifold is a set of points that is locally connected in a particular way. A 1Holdnhas
the structure of a piece of string, possibly with its ends tied in a loop, and an#eithhas the
structure of a piece of paper or rubber sheet that has been cu¢drapp glued along its edges—a
category that includes disks, spheres, tori, and Mobius bands.

Definition 17 (manifold). A topological space is a k-manifold or simply manifold if every
pointx € X has a neighborhood homeomorphidpor HX. Thedimensiorof T is k.

A manifold can be viewed as a purely abstract topological space, or ieeambedded into a
metric space or a Euclidean space. Even without an embedding, everpldaaif be partitioned
into boundary and interior points. Observe that these words mean Meyedit things for a
manifold than they do for a metric space or topological space.

Definition 18 (boundary; interior) Theinterior Int X of a manifoldX is the set of points iX that

have a neighborhood homeomorphidf TheboundaryBdX of X is the set of pointX \ IntX.

The boundary B&, if not empty, consists of the points that have a neighborhood homeomorphic
to HK. If Bd X is the empty set, we say thatis without boundary

A single point, a 0-ball, is a 0O-manifold without boundary according to thisndi&fn. The
closed diskB? is a 2-manifold whose interior is the open digkand whose boundary is the circle
st. The open diskB?Z is a 2-manifold whose interior 82 and whose boundary is the empty set.
This highlights an important ffierence between Definitions 4 and 18 of “boundary”: whgris
viewed as a point set in the spaRé, its boundary isS* according to Definition 4; but viewed
as a manifold, its boundary is empty according to Definition 18. The bouraaymanifold is
alwaysincluded in the manifold.

The open diskB2, the Euclidean spadg?, the spheres?, and the torus are all connected
2-manifolds without boundary. The first two are homeomorphic to eaclr,dibethe last two
are topologically dferent from the others. The sphere and the torus are compact (ltbande
closed with respect t8%) whereass?2 andR? are not.

A 2-manifold X is non-orientablef, starting from a pointp, one can walk on one side &f
and end up on the opposite sideXofipon returning t@. Otherwisel is orientable Spheres and
balls are orientable, whereas th@bius bandn Figure 6 is a non-orientable 2-manifold.
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Figure 7: (a) Removal of the bold loops opens up the torus into a topologsial (b) Every
surface without boundary iR® resembles a sphere or a conjunction of one or more tori.

A surfaceis a 2-manifold that is a subspacelRst. Any compact surface without boundary in
R3 is an orientable 2-manifold. To be non-orientable, a compact surfacehausta nonempty
boundary (like the M6bius band) or be embedded in a 4- or higher-dimeaidtoiclidean space.

A surface can sometimes be disconnected by removing one or loaps (connected 1-
manifolds without boundary) from it. Thgenusof a surface ig if 2g is the maximum number of
loops that can be removed from the surface without disconnecting itflefeops are permitted
to intersect each other. For example, the sphere has genus zerayasoepecuts it into two
balls. The torus has genus one: a circular cut around its neck andmdseccular cut around its
circumference, illustrated in Figure 7(a), allow it to unfold into a rectanglécivtopologically
is a disk. A third loop would cut it into two pieces. Figure 7(b) shows a 2-nodthifvithout
boundary of genus 2. Although a high-genus surface can have @aaplex shape, all compact
2-manifolds inR3 that have the same genus and no boundary are homeomorphic to each other

5 Smooth manifolds

A purely topological manifold has no geometry, but once embedded in a Eaalispace it may
appear smooth or creased. Here we enrich the notion of a geometric masyfaigposing a
differential structure on it. For the rest of this chapter, we are discussipgramifolds without
boundary.

Consideramap : U — W whereU andW are open sets iR andRY, respectively. The map
¢ hasd components, namely(x) = (¢1(X), ¢2(X), ..., dd(X)), wherex = (X1, Xz, ..., Xk) denotes
a point inRK. TheJacobianof ¢ at x is thed x k matrix of the first-order partial derivatives

0¢1(X) d¢p1(X)

o o Toxe

9¢d(X) 9¢d(X)
ot ox

The mapy is regular if its Jacobian has rarkat every point inJ. The mapp is C'-continuous if
theith-order partial derivatives af are continuous.

The reader may be familiar wigarametric surfacesor which U is ak-dimensionaparam-
eter spaceand its imagep(U) in d-dimensional space is a parametric surface. Unfortunately, a
single parametric surface cannot easily represent a manifold with a coteglicgology. How-
ever, for a manifold to be smooth, itffices that each point on the manifold has a neighborhood
that looks like a smooth parametric surface.
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Definition 19 (smooth manifold) For anyi > 0, ak-manifold £ without boundary embedded
in RY is C'-smoothif for every pointp € X, there exists an open set, ¢ R¥, a neighborhood
W, c RY of p, and a mappp : U, — W, N X such that (i)¢p is C'-continuous, (ii)¢p is a
homeomorphism, and (iigpp is regular. Itk = 2, we callZ aC'-smooth surface

The first condition says that each map is continuousfiedéntiable at leasttimes. The
second condition requires each map to be bijective, ruling out “wrinklésrey multiple points
in U map to a single point ikV. The third condition prohibits any map from having a directional
derivative of zero at any point in any direction. The first and thirddittons together enforce
smoothness, and imply that there is a well-defined tangdiait at each point irE. The third
condition prohibits any map from having a directional derivative of zdrarg point in any
direction. The first and third conditions together enforce smoothnedsgly that there is a
well-defined tangerit-flat at each point irt. The three conditions together imply that the maps
¢p defined in the neighborhood of each point X overlap smoothly. There are two extremes of
smoothness. We say thatis C*-smooth if for every poinp € X, the partial derivatives app
of all orders are continuous. On the other hahds nonsmoothf X is ak-manifold (therefore
CP%-smooth) but no€C-smooth.

Exercises

1. LetX be a point set, not necessarily finite #. Prove that the following two definitions
of the convex hull ofX are equivalent.

e The set of all points that are convex combinations of the poinks in
e The intersection of all convex sets that incluxie

2. In every metric spacg, the point set9 andT are both closed and open.

(a) Give an example of a metric space that has more than two sets that adseith
and open, and list all of those sets.

(b) Explain the relationship between the idea of connectedness and themnahdets
that are both closed and open.

3. Prove that for every subsktof a metric space, CIC{ = Cl X. In other words, augmenting
a set with its limit points does not give it more limit points.
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