MTH 244 — Numerical Methods 1

MTH 244 - Additional Information for §7.2 and §7.3
Section 1 (Merino) and section 3 (Dobrushkin) - March 2003

Sections 7.2 and 7.3 are about numerical procedures used to obtain approximate solutions to
the initial-value problems for ordinary differential equations,

y/ = f($ay)> y(I‘()) = Yo; (1)

Numerical methods for solving differential equations produce sequences of points (x1,y1), (2, y2),
.oy (Tk, yx), where y, is an approximation to ys.(zx), the actual solution at the point xy.
Here we shall be considering points the case the z’s are incremented by a fixed amount,
h > 0. The general scheme for producing points is the following.

Given a current point (z,y) and a step h > 0, generate a new point (Tpext, Ynext) as follows:

Tnext = T + h
{ Ynexe = Y + O(z,y,) @)

Here ® is known beforehand and it may depend on z, y and h, (that’s why we write ®(x,y, h)).
There are many possible choices for ®, each with advantages and disadvantages.

The value ynexs in Eq. 2 is intended to approximate y,q(x+h), the value of the actual solution
of the initial value problem (1) at the point x + h.

Example 1: Euler’s method

The simplest choice of ® that gives a working method is when ® = h f(z,y), where f(z,y)
is the function that appears in equation (1). In this case the resulting method is precisely
Fuler’s method, which was discussed in MTH 142. Euler’s method is not used much in practice,
except for didactical purposes (it is easy to explain, and understanding how it works helps when
studying more complicated methods). The formulas for updating x and y with Euler’s method
are the following:

{ Tnext = T + h (3)
YUnext = Y + hf(.ﬁE, y)

PROBLEM 1.1

(a) Solve with maple the IVP ¢/ = 22 4+ y*, y(0) = 0. Plot the solution curve for 0 < z < 1.5.
(b) Write Maple code implementing Euler’s method to approximate the solution to the IVP
with A = 0.15. Calculate 10 points zy, s, ..., x19. Plot the approximation y,,, together with
the actual solution ..

(c) Calculate yso at the grid points 1, za, ..., z10. and plot the error ysu(xe) — Yapp(Te).

PROBLEM 1.2

a) For the IVP given in Problem 1.1, calculate an approximate solution with Euler’s method
and h = 0.015. Calculate 100 points. Plot the approximate solution together with the solution.
b) same as part (a), only now with h = 0.0015 and 1000 points.

c¢) Calculate the error yso — Yapp for for the answers (a) and (b). Produce a logplot of the error
for both (a) and (b).

MTH 244 — Numerical Methods 2

Example 2: The Taylor Series Method

The formula for the update 1,..+ in Euler’s method is based on the linearization of y about x.
A more accurate method is obtained if an order 2 Taylor polynomial is used instead. This is
the Taylor Series method of order 2. The corresponding formulas for solving the initial value
problem (1) are shown below.

{xnext:x+h

Yoos =y + 1 (0,9) + 2 (fulesy) + o) f(ry)) @)

One can also obtain formulas for Taylor Series methods of orders larger than 2, but the
formulas become quite complicated.

PROBLEM 2

Redo problems 1.1 and 1.2, but now use the Taylor Series method of order 2 instead. Compare
the new results with the ones obtained with Euler’s method.

Runge-Kutta Methods

The methods associated with the names of Runge, Kutta and others are among the more popular
as well as most accurate numerical procedures used to obtain approximate solutions to the
initial-value problems for ordinary differential equations,

y = flv,y), y(@o) = vo; (5)

The main idea of this method is due to Runge (1895). The main features of the Runge-Kutta
methods are that the updates y,ext are calculated with formulas that involve function evaluation
of f(z,y) at different points, and that the methods exhibit hight accuracy.

Recall the general scheme for producing a new point (Z,ext, Ynewt):

Tnext = T + h
Unext = Y + (I)(.CL', Y, h)

In the table given in page 3, you will find the formulas for many special cases of Runge-Kutta.

Error
The (local) truncation error of the method at the point (z,y) is defined by

T(xa Y, h) = ysol(l' + h) — UYnext-

The method ® is said to have order p if |T(z,y,h)| < C h?, where C is a constant independent
of z, y, and h. We express this property in symbols as T'(z,y,h) = O (h?). The expression
O(h™) means a function of h that proportional to A" when h — 0.

It is shown in more advanced courses of Numerical Analysis that that the error in Euler’s
method is order p = 2 (that is, the error is proportional to h?), and the Taylor Series Method
mentioned above is order p = 3 (error is proportional to h*). The Runge Kutta methods, on the
other hand, have order p = 5. That is, they are at least two orders of magnitude better than
Euler’'s Method and the Taylor Series methods discussed above.

Note: The truncation error requires exact value of (z,y) (it is local). When going from z¢ to x, there is an accumulation
of error, resulting in the global truncation error, roughly equal to n times the local error. Since n is inversely
proportional to h, the global error is one power of h less than the local error. For example, Euler’s method is order 2,
but if you plot approximations to the solution corresponding to different values of h on an interval [a, b], you will see an

order 1 improvement in the error. (That is, a factor of ten decrease in h results in a factor of 10 decrease in the error).

MTH 244 — Numerical Methods

1. The improved Euler’s method or the Heun’s method:

Ynt1 = Yn + 2F(@n,yn) + 2 F(@n + hyYn + Bf (@0, yn)) + T,

2. The improved polygon method or the modified Euler’s method:
Yn+1 = Yn + hf(xn + h/2a Yn + hf(xn’yn)/2) + Ty,

3. The third order Runge-Kutta method:

ki = f(ffn,yn%
Yn+1 = Yn + % (k1 + 4ks + k3), where ko = f(zn+h/2,yn + k1h/2),
ks = f(zn+h,yn + 2hke — hk1).

4. The fourth order Runge-Kutta method:

ki = fn = f(®n,yn),
k2:f(xn Qayn+hk1)
k3:f(xn Q,Zln+ k2)7
k4 = f(In + h,yn + hkg)

Yn+l = Yn + %(lﬁ + 2ko + 2k3 + k4), where

5. The fourth order Runge-Kutta method:
kl :fn(: f(thyn), N)
ko= f(zn+ 3,yn + 5k
h 2 n) JIN 1)»
2(k k ks + k h 3 3
+ 8(1+3 2+3 3+ 4)1W ere kng($n+%,yn*%kl+hk2);
ky = f(@n + h,yn + hk1 — hky + hk3).

Yn+1 = Yn

6. The Gill’s formula (fourth order): y,11 =y, + % {kl +2 (1 — %) ko +2 (1 + %) ks + k4} ,
kl = f(ﬂfmyn),
k2:f(zn+g;yn hkl)
where k3:f<xn+27yn_ l_T)hkl'i‘(\}5)/1/?2),
it = f (@0 + hyyn — Sk + (14) hks).
7. The Runge-Kutta-Fehlberg method: y,.1 =y, + 135 5 ki + 162685265 ks + ggigé ky — k5 + = kb,
kjl - hf(l‘n, yn)
k2—hf(xn 4ayn+ kl)
3—]’Lf(33‘n+ S,yn k1+3&k2),
M k= (o B R E).
k’5*hf(£l? +h 3?616178]624*]{33748;461164,
B (o0 + oy — o by + 2k — 50 g+ 1838, 2 M k).

8. The fourth order Runge-Kutta-Nystrom method for the
second order differential equation y” = f(z,y(x),y'(x)):

Fl :hf(xkaykay;g)a
Fy=nhf (zc+5hue+ 35 Fa,yp + 5 F1)
F,=h(y, + 3 Fs),

Z/k+1:yk+h(yf€+%(F1+F2+F3))7

Fa:h(y;f—’—%Fl)
Fs=hf(zk+3hye+3Fay,+3F2),
Fy = hf (zps1, 96 + Fo,), + F3)

Yhir = Yp + L (F1 + 2F + 2F3 + Fy).

MTH 244 — Numerical Methods

Maple Code Solution of Problems 1.1, 1.2 and 2

> restart;
> with(DEtools):
> with(plots):

Problem 1.1.8 —————————————— -

> dsolve ({diff (y(x),x)=y(x) "2+x~2,y(0)=0},y(x));

> fsol:=x -> -x*(-BesselJ(-3/4,1/2*xx"2)+BesselY(-3/4,1/2*x"2))/
(-BesselJ(1/4,1/2%x"2)+BesselY(1/4,1/2%x"2)):

> psol:=plot(fsol(x),x=0..1.5):

> display(psol);

Problem 1.1.b - - - -
> x[0]:=0.: y[0]:=0: h := 0.15:
> for k from 0 to 9 do
x[k+1] := x[k]+h:
yk+1] := y[k]+(x[k]"2+y[k]"2)*h:
od:
ptsappl := seq([x[k],y[k]],k=1..10):
ptssoll := seq([x[k],fsol(x[k])],k=1..10):
plapp:=pointplot ({ptsappl}):
display(psol,plapp);
errorplotl := pointplot({seq([x[k],fsol(x[k])-y[k]],k=1..100}):
display(errorplotl);

V V.V V V VvV

> x[0]:=0.: y[0]:=0: h := 0.015:
> for k from 0 to 99 do

x [k+1] x[k]+h:

y [k+1] y [k]+(x[k] ~2+y[k] ~2) *h:
od:
ptsapp2 := seq([x[k],y[k]l]l,k=1..100):
ptssol2 := seq([x[k],fsol(x[k])],k=1..100):
p2app:=pointplot ({ptsapp2}):
display(psol,p2app) ;
errorplot2 := pointplot({seq([x[k],fsol(x[k])-y[k]],k=1..100)}):
display(errorplot2);

V V. V V V VvV

PROBLEM 1.2.b —-—-———--——————————————- -—= -——=
> x[0]:=0.: y[0]:=0: h := 0.0015:
> for k from O to 999 do
x[k+1] := x[k]+h:
y [k+1] y [k1+(x [k] ~2+y [k] “2) *h:
od:
ptsapp3 := seq([x[k],y[k]],k=1..1000):
ptssol3 := seq([x[k],fsol(x[k])],k=1..1000):
p3app:=pointplot ({ptsapp3}):
display(psol,p3app) ;
errorplot3 := pointplot({seq([x[k],fsol(x[k])-y[k]],k=1..1000)}):
display(errorplot3);

vV V.V V Vv VvV

PROBLEM 1.2.c ---- - T
> display(errorplotl,errorplot2,errorplot3);

> errorploti2c := logplot([seq([x[k],fsol(x[k])-y[k]],k=1..100)],symbol=box):
> display(errorploti2c);

Problem 2 ———————————— -
> x[0]:=0.: y[0]:=0: h := 0.15:
> for k from O to 9 do
x[k+1] := x[k]+h:
ylk+1] := yk]+(x[k] 2+y[k]~2)*h + (2*x[k] + 2*y[k]*(x[k] 2+y[k]~2))*h~2/2:
od:
> ptsapp4 := seq([x[k],y[k]],k=1..10):
> ptssold := seq([x[k],fsol(x[k])],k=1..10):
> pdapp:=pointplot ({ptsapps}):
> display(psol,pdapp) ;

. e 2P Pe®m o -« 7 Pa W8 e W W™ o 4 PR,

