## Additional Problems for Section 1.3

## **PROBLEMS**

Solve each of the equations in Problems 1 through 7.

2.  $\frac{dy}{dx} = \frac{x^2}{y(1+x^3)}$ 

 $4. \ \frac{dy}{dx} = 1 + x + y^2 + xy^2$ 

6.  $x \frac{dy}{dx} = (1 - y^2)^{1/2}$ 

1. 
$$\frac{dy}{dx} = \frac{x^2}{y}$$

$$3. \frac{dy}{dx} + y^2 \sin x = 0$$

$$5. \frac{dy}{dx} = (\cos^2 x)(\cos^2 2y)$$

7. 
$$\frac{dy}{dx} = \frac{x - e^{-x}}{y + e^y}$$

Find the solution of each of the equations in Problems 8 through 12 satisfies the given initial condition.

8. 
$$\sin 2x \, dx + \cos 3y \, dy = 0$$
;  $y(\pi/2) = \pi/3$ 

•9. 
$$x dx + ye^{-x} dy = 0$$
,  $y(0) = 1$ 

$$10. \frac{dr}{d\theta} = r, \qquad r(0) = 2$$

11. 
$$\frac{dy}{dx} = \frac{\ln|x|}{1+y^2}$$
,  $y(1) = 0$ 

12. 
$$\frac{dy}{dx} = xy^3(1+x^2)^{-1/2}, \quad y(0) = 1$$

13. Solve the equation

$$y^2(1-x^2)^{1/2} dy = \sin^{-1} x dx$$

in the interval -1 < x < 1.

14. Solve the equation

$$\frac{dy}{dx} = \frac{ax + b}{cx + d}$$

where a, b, c, and d are constants.

15. Solve the equation

$$\frac{dy}{dx} = \frac{ay + b}{cy + d}$$

where a, b, c, and d are constants.

\*16. Show that the equation

$$\frac{dy}{dx} = \frac{y - 4x}{x - y}$$

is not separable, but that if the variable y is replaced by a new variable v defined by v=y/x, then the equation is separable in x and v. Find the solution of the given equation by this technique.