Solve the following initial value problems. 28. $y' = \sqrt{\frac{x+2y}{x+2y}}$

28.
$$y' = \sqrt{\frac{x + 2y}{y}}$$

 $y(1) = 1$

29.
$$\sqrt{(x^2 + y^2)}dx - 2xy/dy = \sqrt{(1)} = \sqrt{(2)}$$

31. $\sqrt{(2)} = \frac{2x + y/-4}{x - y + 1}$
 $\sqrt{(2)} = 2$

1 7 EQUATIONS REDUCIBLE TO FIRST ORDER

In this section we study two types of higher-order ordinary differential equations that can be reduced to first-order equations by means of simple transformations.

A. Equations of the form

$$y^{(n)} = F(x, y^{(n-1)}), (1)$$

containing only two consecutive derivatives $y^{(n)}$ and $y^{(n-1)}$ can be reduced to first order by means of the transformation

$$w = y^{(n-1)}. (2)$$

In fact, differentiating both sides of Eq. (2) with respect to x, we find $w' = y^{(n)}$, and using (1), we obtain

$$w' = F(x, w).$$

EXAMPLE 1 Compute the general solution of the differential equation

$$y''' - \frac{1}{r}y'' = 0. (3)$$

Solution Setting w = y'', Eq. (3) becomes

$$w' - \frac{1}{x}w = 0. \tag{4}$$

Equation (4) is separable (and linear) with general solution

$$w(x) = c_1 x.$$

Thus, $y'' = c_1 x$. Integrating with respect to x, we obtain $y' = \frac{1}{2} c_1 x^2 + c_2$. Another integration yields $y = \frac{1}{6} c_1 x^3 + c_2 x + c_3$. As c_1 is an arbitrary constant, the general solution of Eq. (3) is

$$y(x) = c_1 x^3 + c_2 x + c_3. (5)$$

REMARK 1 The general solution of an ordinary differential equation of order n contains n arbitrary constants. For example, Eq. (3) is of order 3, and as we have seen, its general solution (5) contains the three arbitrary constants c_1 , c_2 , and c_3 .

B. Second-order differential equations of the form

$$y'' = F(y, y') \tag{6}$$

(they should not contain x) can be reduced to first order by means of the transformation

$$w = y'. (7)$$

In fact, from (7) we obtain (using the chain rule)

$$y'' = \frac{dw}{dx} = \frac{dw}{dy} \cdot \frac{dy}{dx} = \frac{dw}{dy} w.$$

Thus, Eq. (6) becomes

$$w\frac{dw}{dy}=F(y,w),$$

which is first order with independent variable y and unknown function w. Sometimes this latter equation can be solved by one of our earlier methods.

EXAMPLE 2 Solve the IVP

$$y'' = y'(y' + y)$$
 (8)
 $y(0) = 0$
 $y'(0) = -1$

Solution Here the differential equation (8) does not contain x and therefore can be reduced to a first-order differential equation by means of the transformation w = y'. In fact, Eq. (8) becomes

$$\frac{dw}{dy} - w = y, (9)$$

which is linear. Multiplying both sides of (9) by e^{-y} we obtain $(d/dy)(we^{-y}) = ve^{-y}$. Integrating with respect to y we find $we^{-y} = -ye^{-y} - e^{-y} + c_1$, and so

$$y'(x) = w = -y - 1 + c_1e^y$$
.

Using the initial conditions, we find that $c_1 = 0$. Thus,

$$y' = -y - 1$$

and $y(x) = -1 + ce^{-x}$. Using the initial condition y(0) = 0, we find that c = 0, and the solution of Eq. (8) is

$$y(x) = -1 + e^{-x}.$$

APPLICATION 1.7.1

■ Assume that two compartments A_1 and A_2 , of volumes V_1 and V_2 , respective are separated by a barrier. Through the barrier a solute can diffuse from compartment to the other at a rate proportional to the difference $c_1 - c_2$ concentration of the two compartments, from the higher concentration to lower. Find the concentration in each compartment at any time t.

Solution Let $y_1(t)$ and $y_2(t)$ be the amount of the solute in the compartm A_1 and A_2 , respectively, at time t. Then

$$c_1(t) = \frac{y_1(t)}{V_1}$$
 and $c_2(t) = \frac{y_2(t)}{V_2}$

are the concentrations in compartments A_1 and A_2 , respectively. The different equations describing the diffusion are

$$\dot{y}_1(t) = k(c_2 - c_1)$$
 and $\dot{y}_2 = k(c_1 - c_2)$,

where k is a constant of proportionality (k > 0). Dividing by the volumes of compartments, we get

$$\dot{c}_1 = \frac{k}{V_1}(c_2 - c_1)$$
 and $\dot{c}_2 = \frac{k}{V_2}(c_1 - c_2) = -\frac{\dot{y}_1}{V_2} = -\frac{V_1}{V_2}\dot{c}_1$.

Differentiating both sides of the first equation and using the second equat we find that

$$\dot{c}_1 = \frac{k}{V_1}(\dot{c}_2 - \dot{c}_1) = -k\left(\frac{1}{V_1} + \frac{1}{V_2}\right)\dot{c}_1$$

or

$$\ddot{c_1} + k \left(\frac{1}{V_1} + \frac{1}{V_2} \right) \dot{c_1} = 0.$$

Equation (11) is a differential equation of form A and can be reduced to a fi order differential equation. We leave the computational details for Exerc 5, 6, and 7.

EXERCISES

Compute the general solution of the following differential equations.

1.
$$y'' + y' = 3$$

2.
$$v^{(5)} - v^{(4)} = 0$$

Solve the following initial value problems.

$$3. y'' = \frac{1 + y'^2}{2y}$$

4.
$$y'' + y = 0$$

$$y(0)=1$$

$$y(0)=0$$

$$y'(0) = -1$$

$$y'(0)=1$$

1 Elementary Methods—First-Order Differential Equations

In Exercises 5 through 7, let $c_1(0)$ and $c_2(0)$ be the initial concentrations in the two compartments in the chemistry application. Show that:

5.
$$c_1(t) = c_1(0) - \frac{V_2}{V_1 + V_2} [c_2(0) - c_1(0)] \left\{ \exp \left[-k \left(\frac{1}{V_1} + \frac{1}{V_2} \right) t \right] - 1 \right\}$$

6.
$$c_2(t) = c_2(0) - \frac{V_1}{V_1 + V_2} [c_1(0) - c_2(0)] \left\{ \exp \left[-k \left(\frac{1}{V_1} + \frac{1}{V_2} \right) t \right] - 1 \right\}$$

7. $c_1(\infty) = c_2(\infty) = \frac{V_1 c_1(0) + V_2 c_2(0)}{V_1 + V_2}$. That is, after a long time, the concentrations in the two compartments are equal, and so equilibrium would be reached.

Find the general solution of the following differential equations.

8.
$$xy'' + y' = 3$$

8.
$$xy'' + y' = 3$$
 9. $y^{(5)} - \frac{1}{x}y^{(4)} = 0$ **10.** $y''' + y'' = 1$

10.
$$y''' + y'' = 1$$

11.
$$y'' - y = 0$$

11.
$$y'' - y = 0$$
 12. $y'' = 2y' + 2y'y$

13.
$$y'' - 2y^{-3}y' = 0$$

Astrophysics Differential equations of the form

$$y'' = (1 + y'^2) f(x, y, y')$$

have been obtained in connection with the study of orbits of satellites.24 Solve this differential equation in each of the following cases.

14.
$$f(x, y, y') = \frac{1}{y}$$
 15. $f(x, y, y') = y'$

15.
$$f(x, y, y') = y$$

16.
$$f(x, y, y') = 1$$

17. Solve the essentially "circular" 25 differential equation

$$y''' = y'(3y'' - y'''y')$$

(Hint: Rewrite the differential equation in the form

$$\frac{y'''(1+y'^2)-3y'y''}{(1+y'^2)^{5/2}}=0$$

and observe that the left-hand side is the derivative of the curvature

$$K = \frac{y''}{(1 + y'^2)^{3/2}}$$

of the solution curves.)

²⁴ See Notices AMS (Jan. 1975): A142.

²⁵ Amer. Math. Monthly 92 (1985). 511