Math 562 Homework 4

Dr. Mark Comerford

Due Tuesday March 27, 2012

All problems worth 20 points, including bonus problems

1. Automorphisms of the Disc

Show that the biholomorphic maps (i.e. automorphisms) of the unit disc \mathbb{D} are precisely the functions $\phi : \mathbb{D} \mapsto \mathbb{D}$ of the form

$$\phi(z) = e^{i\theta} \frac{z - w}{1 - \overline{w}z}$$

for some $\theta \in \mathbb{R}$ and some $w \in \mathbb{D}$.

The proof consists of two main parts. The first part is to show that functions of this type are automorphisms of \mathbb{D} . First show that a map ϕ as above maps the unit circle \mathbb{T} to itself. Now apply a theorem from the notes to conclude that $\phi(\mathbb{D}) \subset \mathbb{D}$. Then construct the inverse function ϕ^{-1} and use a similar argument to above to conclude that $\phi^{-1}(\mathbb{D}) \subset \mathbb{D}$. Next show that $\phi \circ \phi^{-1}$ and $\phi^{-1} \circ \phi$ are both the identity on \mathbb{D} . This shows that ϕ is a bijective map from \mathbb{D} onto its range $\phi(\mathbb{D})$. Now deduce that in fact $\phi(\mathbb{D}) = \mathbb{D}$ and finally conclude that ϕ is a biholomorphic map of \mathbb{D} onto itself.

For the second part, let ϕ be any automorphism of \mathbb{D} . By composing ϕ with a suitable function, obtain another automorphism ψ of \mathbb{D} for which $\psi(0) = 0$. Now apply the Schwarz lemma to ψ and ψ^{-1} .

2. Uniform Convergence of Derivatives

Let Ω be a domain and let $\{f_n\}$ be a sequence of analytic functions on Ω which converges uniformly to f (which is then also analytic on Ω). Use the Schwarz lemma to show that the derivatives f'_n converge to f' and that this convergence is uniform on any compact subset of Ω .

Hint: Consider the range of the differences $f_n - f$ and obtain from them a function $g: \mathbb{D} \mapsto \mathbb{D}$ which satisfies g(0) = 0.

Please turn over!

3. The Schwarz-Pick Lemma

Let $f : \mathbb{D} \to \mathbb{D}$ be analytic. Show that for every fixed $z_0 \in \mathbb{D}$ we have

$$|f'(z_0)| \le \frac{1 - |f(z_0)|^2}{1 - |z_0|^2}.$$

Hint: Pre- and postcompose with suitable automorphisms of \mathbb{D} as found in Question 1 to obtain a function which fixes 0. Now apply the usual result about functions from \mathbb{D} to itself which fix 0.

4. Conformal Mappings Preserve Angles

Consider two differentiable curves γ and η which intersect at a point z_0 so that we can find t_0, t_1 such that

$$z_0 = \gamma(t_0) = \eta(t_1).$$

We define the angle between the two curves to be the angle between the tangent vectors $\gamma'(t_0)$ and $\eta'(t_1)$.

For two complex numbers z, w, we define the scalar product $\langle z, w \rangle$ by

$$\langle z, w \rangle := \operatorname{Re}(z\overline{w}).$$

Let $\theta(z, w)$ be the angle between z and w (where we view z and w as vectors in the plane). Then

$$\cos\theta(z,w) = \frac{\langle z,w \rangle}{|z||w|}.$$

Since $\sin \theta = \cos(\theta - \pi/2)$, we also have

$$\sin\theta(z,w) = \frac{\langle z, -iw \rangle}{|z||w|}.$$

Now let f be an analytic function defined on a neighbourhood of z_0 with $f'(z_0) \neq 0$. Show that the angle between the curves $f \circ \gamma$ and $f \circ \eta$ is the same as that between γ and η .

Hint: Use the chain rule to find the formula for $(f \circ \gamma)'(t)$.

Does the result remain true if we allow the possibility that $f'(z_0) = 0$? Justify your answer!

Please turn over!

5. An Estimate on the Number of Zeroes

Consider a holomorphic map $f : \mathbb{D} \mapsto \mathbb{D}$ with $f(0) \neq 0$.

(a) Show that f has only finitely many zeroes z_j with $|z_j| \le 1/3$ and call them z_1, \ldots, z_n . Show that (by defining it suitably at the points z_j) the function

$$g(z) := f(z) / \prod_{j=1}^{n} \left(\frac{z}{z_j} - 1\right)$$

is holomorphic on \mathbb{D} .

Hint: For the sake of simplicity in this part, you may assume that all the points z_j are simple zeroes and that they are distinct. However, the same conclusion holds without these assumptions.

(b) Show that $|g(z)| \leq 2^{-n}$ for all $z \in \mathbb{D}$.

Hint: Show first that $|g(z)| \leq (3|z|-1)^{-n}$ for all z with |z| > 1/3 and then apply the maximum principle.

(c) Show that

$$n \le -\frac{\ln|f(0)|}{\ln 2}$$

where $\ln x$ is the usual natural logarithm from calculus.