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EXAMPLE 1

EXAMPLE 2
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point of (6).

Five Types of Critical Points

There are five types of critical points depending on the geometric shape of the .trajectories
near them. They are called improper nodes, proper nodes, saddle points, centers, and
spiral points. We define and illustrate them in Examples 1-5.

(Continued) iImproper Node (Fig. 81}
An improper node is a critical point Py at which all the trajectories, except for two of them, have the same
limiting direction of the tangent. The two exceptional trajectories also have a limiting direction of the tangent

at Py which, however, is different.
The system (8) has an improper node at 0, as its phase portrait Fig. 81 shows. The common limiting direction
at 0 is that of the eigenvector x® =1[1 117 because e~ ¥ goes to zero faster than e~ ag t increases. The two

exceptional limiting tangent directions are those of x® = [1  —1]" and @ = [—-1 11 B

Proper Node (Fig. 82)
A proper node is a critical point Pg at which every trajectory has a definite limiting direction and for any given
direction @ at Py there is a trajectory having d as its limiting direction.

The system

, 1 0 n=n
(10) y' = Ys thus
0o 1 5

has a proper node at the origin (see Fig.
{1 - )L)2 = (O has the root A = 1. Any X
a general solution is

£2). Indeed, the matrix is the unit matrix. Its c_haractf:ristic equation
+ 0 is an eigenvector, and we can take [1 0]" and [0 1]'. Hence

1 " 0 ¢ ¥y = 1€

Yy=0C e + g e or or c1¥s = C9¥1. |
0 1 Y2 = C'2€t -
y2 y2

Fig. 81. Trajectories of the system (8) Fig. 82. Trajectories of the system (10}
(Improper node) (Proper node}




EXAMPLE 3

i EXAMPLE 4

Saddle Point {Fig. 83}
A saddle point is a critical point Pg at which there are two incoming trajectories, two outgoing trajectories, and
all the other trajectories in a neighborhood of Py bypass Pyp.

- The system
, I 0 )’i = N
(11 y' = Y, thus ,
0 -1 Y2 = ~Ys
has a saddle point at the origin. Its characteristic equation (1 — A)}(—1 — A) = 0 has the roots A; = 1 and
Ay = —1. For A = 1 an eigenvector [1 017 is obtained from the second row of (A — ADx = 0, that is,
Oxq + (—1 — 1xg = 0. For A = —1 the first row gives [0 1. Hence a general solution is
1 t. 0" y, = et
y=o¢ e + ¢y et or — OF Y1¥a = const.
0 ! Yo = Ca¢€
This is a family of hyperbolas (and the coordinate axes); see Fig. 83. ;|

Center (Fig. 84)

A center is a critical point that is enclosed by infinitely many closed trajectories.
The system

, 0 1 Y1 = Yo
(12) y = ¥, thus )
-4 0 ya = —4n

il

has a center at the origin. The characteristic equation A2 4 4 = 0 gives the eigenvalues 2/ and —2i. For 2i an
eigenvector follows from the first equation —2ix; + xp = 0 of (A — ADx = 0, say, [1 2]". For A = —2i that
equation is —(—2{)xy + x9 = 0 and gives, say, [1 —2i'. Hence a complex general solution is

—2it

17 1 _ yp = e+ cae
(12%) y = [ j’ 4+ ey [ :I &2t thus : L
2i —2i yo = 2icyet — 2icge” .

The next step would be the transformation of this solution to real form by the Euler formula (Sec. 2.2). But we
were just curious to see what kind of eigenvalues we obtain in the case of a center. Accordingly, we do not
continue, but start again from the beginning and use a shortcut. We rewrite the given equations in the form
y1 =y 4y = — y; then the product of the left sides must equal the product of the right sides,

4y1yi = —yzyé. By integration, 2y12 + %yzz = const.

This is a family of ellipses (see Fig. 84) enclosing the center at the origin. i

_')"2 : : y2

Fig. 83. Trajectories of the system (11) Fig. 84. Trajectories of the system‘ (12}
{Saddle point) ' (Center)




CEXAMPLE 5

TEXAMPLE 6

Spiral Point (Fig. 85)
A spiral point is a critical point Py about which the trajectories spiral, approaching Py as t — o (or tracing
these spirals in the opposite sense, away from Fp).

The system

!

, -t 1 yi= —y1t e
(13) y = Y, thus ,
. -1 -1 Y2 = "Y1 Y2

has a spiral point at the origin, as we shall see. The characteristic equation is A+2r+2=0T1 gives the
eigenvalues —1 + { and —1 — i Corresponding eigenvectors are obtained from (—1 — A)xy + x9 = 0. For
A = —1 + i this becomes —ix; + xg = 0 and we can take 1 1] as an eigenvector. Similarly, an eigenvector
corresponding to —1 — iis |1 —i]T. This gives the complex general solution

1 ) 1 .
y =0 [ } LI l: :| £V
i —i

The next step would be the transformation of this complex solution to a real general solution by the Euler
formula. But, as in the last example, we just wanted to see what eigenvalues to expect in the case of a spiral
point. Accordingly, we start again from the beginning and instead of that rather lengthy systematic calculation
we use a shortcut. We multiply the first equation in (13) by y;, the second by ys, and add, obtaining

2
vyt + yeys = —(n> + y2o

We now introduce polar coordinates r, ¢, where #2 = y.2 + 3,2 Differentiating this with respect to f gives
P N Yo g P g

2rr = 2y, + 2y v4. Hence the previous equation can be written

= —r2, Thus, r=—r drir = —dt, In|r| = —f+ ¢*, r=ce °.
For each real ¢ this is a spiral, as claimed. (see Fig. 85). ]
Y2
/\
=188
k@y ’
Fig. 85. Trajectories of the system (13) (Spiral point)

No Basis of Eigenvectors Available. Degenerate Node (Fig. 86) -
This cannot happen if A in (1) is symmetric {(ay; = @i, as in Examples 1-3) or skew-symmetric (a; = —

thus a;; = 0). And it does not happen in many other cases (see Examples 4 and 5). Hence it suffices to explain
the method to be used by an example.




(LT

Find and graph a general solution of

' -, 4 1
(14 : y=Ay:[ Jy-

Selution. A is not skew-symmetric! Its characteristic equation is

4 — A 1

det(A—/\I)=’ 1—1\2—6/\+9=(/\—3}2=0

-1 2-A

It has a double root A = 3. Hence eigenvectors are obtained from (4 — Ay + xp = 0, thus from x; + xy = 0,

say, P =01 - I}T and nonzero multiples of it (which do not help). The method now is to substitute

y(2) — Xfeu + u-g)\t

with constant u = [u; z;z]T into (14). (The x¢-term alone, the analog of what we did in Sec. 2.2 in the case of
a double root, would not be enough. Try it.) This gives

y(Z)' = xe™ + Axte* + Auett = Ay(2) = Axte’ + Aune,
On the right, Ax = Ax. Hence the terms Axte™ cancel, and then division by e’ gives
X + Au = Au, thus (A — Alu = x.
Here A = 3and x = [I —11", so that
4 -3 1 ] w tuy =1
(A —3Du= u= , thus
-1 2-3 -1 —uy - g = —1.

A solution, linearly independent of x = [I  — IIT, isu=1[0 I}T. This yields the answer (Fig. 86)

i 1 0
v = ey ® + ey® = ¢ [ :I Aty 62(]: :|I+ ’: ]) St
. —1 -1 1

The critical pomt at the origin is often called a degenerate node. cly gives the heavy straight line, with.

1 > 0 the lower part and ¢; << O the upper part of it. y<2) gives the right part of the heavy curve from 0 through
the second, first, and——hnally—fourth quadrants. *y@) gives the other part of that curve,

Fig. 86. Degenerate node in Example 6




