16 12

Solution. The characteristic equation is the quadratic equation
—4 — A 4

det [A — AT] = |l =AZ+280+1.6=0.
-16 12~ A

It has the solutions A; = —2 and Ay = —0.8. These are the eigenvalues of A.
Eigenvectors are obtained from (14%). For A = Ay = -2 we have from (14%)

{(—4.0 + 2.0)x; + 4.0xq =0
_1.6}(1 + (1.2 + 2.0)X2 = 0‘

A solution of the first equation is x; = 2, x5 = 1. This also satisfies the second equation. (Why?). Hence an

eigenvector of A corresponding to Ay = —2.0 is
. 2 i I
(n x = . Similarly, x@ =
i 0.8
is an eigenvector of A corresponding to Ay = —0.8, as obtained from (14*) with A = Ay, Verify this. B

Systems of ODEs as Models

We first illustrate with a few typiCal examples that systems of ODEs can serve as models
in various applications. We further show that a higher order ODE (with the highest
derivative standing alone on one side) can be reduced to a first-order system. Both facts

account for the practical importance of these systems.

\MPLE 1 Mixing Problem Involving Two Tanks

A mixing problem involving a single tank is modeled by a single ODE, and you may first review the
corresponding Example 3 in Sec. 1.3 because the principle of modeling will be the same for two tanks. The

model will be a system of two first-order ODEs.
Tank 7 and T; in Fig. 77 contain initially 100 gal of water each. In 7} the water is pure, whereas 150 1b of

fertilizer are dissolved in 75. By circulating liquid at a rate of 2 gal/min and stirring (to keep the mixture uniform)
the amounts of fertilizer y,(#) in 7y and yo(t) in Ty change with time ¢. How long should we let the liquid circulate
so that Ty will contain at least half as much fertilizer as there will be left in 75?

Solution. Step 1. Setting up the model. As for a single tank, the time rate of change yi(f) of y,(#) equals
inflow minus outflow. Similarly for tank 7%,. From Fig. 77 we see that

. . 2 2 .
y1 = Inflow/min — Qutflow/min = 0072 Toot {Tank T,)
, _ . 2 2.
yg = Inflow/min — Outflow/min = 10071 o072 (Tank T5).

Hence the mathematical model of our mixture problem is the system of first-order ODEs

yi = —0.02y; + 0.02y, (Tank Ty)
ya = 0.02y; — 0.02y, (Tank Ty).
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Fig. 77. Fertilizer content in Tanks T, {lower curve)and T,

1
As a vector equation with column vector y = ‘: :, and matrix A this becomes

Ya

) -0.02 0.02
¥y = Ay, where A= .
- 0.02 -—-0.02

Step 2. General solution. As for a single equation, we try an exponential function of z,

(1) y = xe™. Then y' = Axe™ = Axe™.

Dividing the last equation Axe™ = AxeM by e* and interchanging the left and right sides, we obtain
AX = Ax.

We need nontrivial solutions (solutions that are not identically zero). Hence we have to look for eigenvalues
and eigenvectors of A. The eigenvatues are the solutions of the characteristic equation

—0.02 — A 0.02 _ ,
2)  det{(A — AT) = = (—0.02 — A2 ~ 0.02% = A(A + 0.04) = 0.
0.02 —0.02 — A '

We see that A; = 0 (which can very well happen—don’t get mixed up—it is eigenvectors that must not be zero)
and A = —0.04. Eigenvectors are obtained from (14*) in Sec. 4.0 with A = 0 and A = —0.04. For our present

A this gives [we need only the first equation in (14%)]

—0.02x; + 0.02xy = 0 and (—=0.02 + 0.04)x; + 0.02xp = O,
respectively. Hence xy = x5 and x; = —xo, respectively, and we can take x; = xo = l and x; = —xg = 1.
This gives two eigenvectors corresponding to Ay = 0 and A, = —0.04, respectively, namely,

1 o 1
X = and x® = .
_ 1 —1

From (1} and the superposition principle (which continues to hold for systems of homogeneous linear ODEs)
we thus obtain a solution

.. { i
At Agt g -
3) y = clx(l)e Yy czx@)e 2= €1 l: :l + ¢g [ } gT004
’ 1 -1

where ¢y and ¢o are arbitrary constants. Later we shall call this a general solution.
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Fig. 77. Fertilizer content in Tanks T, {lower curve}and T,

bal
As a vector equation with column vector y = I: :l and matrix A this becomes
Y2
, —0.02  0.02
y = Ay, "’ where A= .
0.02 —-0.02

¥

Step 2. General solution. As for a single equation, we try an exponential function of f,

e y = xe™. Then y = axe™ = Axe.

Dividing the last equation Axe™ = Axe* by ¢ and interchanging the left and right sides, we obtain
AX = AX.

We need nontrivial solutions (solutions that are not identically zero). Hence we have to look for eigenvalues
and eigenvectors of A. The eigenvalues are the solutions of the characteristic equation

—0.02 - A 0.02
(2} det(A — AI) = = (—0.02 — 1% — 0.02% = AA + 0.04) = 0.
0.02 —0.02 — A

We see that A; = 0 (which can very well happen—don’t get mixed up-—it is eigenvectors that must not be zero)
and A, = —0.04. Eigenvectors are obtained from (14%} in Sec. 4.0 with A = 0 and A = ~{).04. For our present

A this gives [we need only the first equation in (14%)]

—0.02xy + 0.02x5 =0 and (—0.02 + 0.04)x; + 0.02x5 = 0,
respectively. Hence x; = x5 and x; = —xp, respectively, and we can take x; = xg = | and x; = —xg = 1.
This gives two eigenvectors corresponding to A; = 0 and Ay = —0.04, respectively, namely,

1 1
P = and x% = .
1 -1

From (1) and the superposition principle (which continues to hold for systems of homogeneous linear ODEs)

we thus obtain a solution

1 AT @) Aot 1 1 —-0.04¢
(3) y=Xx e Feoxen =g + ¢y e
1 -1

where ¢, and ¢ are arbitrary constants. Later we shall call this a general solution.

Step 3. Use of initial conditions. The initial conditions are y1(0) = 0 (no fertilizer in tank T4) and yo(0) = 150.
From this and (3} with = O we obtain

1 i C1+Cz O
wee (o[22
14 . -1 cp — Co 150




~ CHAP. 4 Systems of ODEs. Phase Plane. Qualitative Methods

In components this is ¢y + ¢2 = 0, ¢y — ¢z = 150. The solution is c; = 75; o = —75. This gives the answer

y = 75x(1) . 75x(2)6—0.04t =75 [1] 75 [ 1} 6—0.0413.
1 —1

yp =75 — 75¢ 004 (Tank T, lower curve)

In components,

yg = 75 + 75¢0-0% (Tank Ty, upper curve).

ase of y; and the exponential decrease of vs to the common limit 75 1b.

Figure 77 shows the exponential incre:
“symmeiric”? Would

Did you expect this for physical reasons? Can you physically explain why the curves look
the limit change if 7' initially contained 100 Ib of fertilizer and T, contained 50 1b?
Step 4. Answer. Ty contains half the fertilizer amount of T, if it contains 1/3 of the total amount, that is,
50 Ih. Thus

yy =75 — 75¢” 0% =50, e~ 00 = 1 ¢ = (In 3)/0.04 = 27.5.

Hence the fluid should circulate for at least about half an hour.

Electrical Network

Find the currents I7(¢) and Ip(?) in the network in Fig. 78. Assume all currents and charges to be zero atf = 0,
the instant when the switch is closed. '

L=1henry €=0.25 farad

Switch I
t=0
= 4 ohms
E = 12 voits =—
L)AL
R2 = 6 ohms

Fig. 78. Electrical network in Example 2

4

Solution. Step 1. Setting up the mathematical model. The model of this network is obtained from
Kirchhoff’s voltage law, as in Sec. 2.9 (where we considered single circuits), Let 1,() and I5(r) be the currents
in'the left and right loops, respectively. In the left loop the voltage drops are Ll =1 1 [V1 over the inductor
and Ry(f; — Ie) = 4l — I) V] over the resistor, the difference because 7y and I flow throngh the resistor
in opposite directions. By Kirchhoff’s voltage law the sum of these drops equals the voltage of the battery; that

is, I, + 4(1; — Ip) = 12, hence
(4a) I = —4h + 4l + 12.

In the right loop the voltage drops are Roly = 61y [V) and Ry(lz — 1) = 4(Iy — Iy) [V] over the resistors and

(WO I dt = 4 [ I, dt [V] over the capacitor, and their sum is zero,

612+4(12v11)+4f12dt:0 or 1012-411+4f12dr:0.




IXAMPLE 2

LEL COLLEPOULICIED,

y1 =75 — 7570048 (Tank Ty, lower curve)

yo =75 + 7500048 (Tank 75, upper curve).

Figure 77 shows the exponential increase of y, and the exponential decrease of y, to the common Himit 75 Ib.
Did you expect this for physical reasons? Can you physically explain why the curves look “symmetric”? Would
the limit change if T; initially contained 100 Ib of fertilizer and T, contained 50 1b?

Step 4. Answer. Ty contains half the fertilizer amount of Ty if it contains 1/3 of the total amount, that is,
30 Ib. Thus

y, =75 — 75¢ 094 = 5p, em 00 = 1 t = (In 3)/0.04 = 275.

Hence the fluid should circulate for at least about half an hour.
i

Electrical Network

Find the currents 74(#) and /5(¢) in the network in Fig. 78. Assume all currents and charges to be zero at ¢ = 0,
the instant when the switch is closed.

L=1henry C = 0.25 farad

Switch ID
t=0
R1 =4 ohms
E =12 volts —
l‘i‘2 = 6 ohms

Fig. 78. Electrical network in Example 2

Solution. Step 1. Setting up the mathematical model. The model of this network is obtained from
Kirchhoff’s voltage [aw, as in Sec. 2.9 (where we considered single circuits). Let 71(¢) and I5(7) be the currents
in the left and right loops, respectively. In the left loop the voltage drops are LI] = I [V] over the inductor
and Ri(l;y — L) = 4(4; — Ip) [V] over the resistor, the difference because {; and I, flow through the resistor
in opposite directions. By Kirchhoff’s voltage law the sum of these drops equals the voltage of the battery; that

is, 711 + 4(I; — I;) = 12, hence

(4a) I{ = —4I, + 4, + 12.

In the right loop the voltage drops are Rply = '612 [Vl and Ry(Jy ~ I;) = 4(I5 — I;) [V] over the resistors and
(VO] I dt = 4 [ I dt [V] over the capacitor, and their sum is zero,

6[2+4(12_11)+4f12dr—0 o 10[2—4]1+4f12d.’t=0.

Division by 10 and differentiation gives I3 — 0.41] + 0.4, = 0.
To simplify the solution process, we first get rid of 0.47;, which by (4a) equals 04(—41, + 45 + 12).

Substitution into the present ODE gives

Iy = 041] — 041, = 0.4(—4 + 4Iy + 12) — 0.4,
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and by simplification
- (4b) Iy = —1.6I; + 1.21, + 4.8.

In matrix form, {(4) is (we write J since I is the unit matrix)

I —4.0 4.0 12.0 7
5 J =AJ + g, where J= , A= , 8= .
I | —-1.6 1.2 4.8

Step 2. Solving (5). Because of the vector g this is a nonkomogeneous system, and we try to proceed as for
a single ODE, solving first the homogeneous system J = AJ (thus J' — AJ = 0) by substituting J = xe*

This gives
T = axe™ = Axe™, hence Ax = Ax.

Hence to obtain a nontrivial solution, we again need the eigenvalues and eigenvectors. For the present matrix
A they are derived in Example 1 in Sec. 4.0:

, 2 1
Ay = —2, XV = ; Ay = —0.8, @ = .
1 0.8

Hence a “general solution” of the homogeneous system is
3, = clx(l) o2t | szcz)e—o.m_

For a particular solution of the nonhomogeneous system (5), since g is constant, we try a constant column vector
J, = a with components ay, ay. Then J;, = 0, and substitution into (5) gives Aa + g = 0; in components,

~4.0ay + 404y + 120=10
—1.6a; + 1.2a, + 48 =0.
The solution is a; = 3, a5 = 0; thus a = [g:l . Hence
(6) I=J+1 “cx(l)e2t+cx)e08t+a;

in components,
Iy = 2618_23 + cze_O‘St + 3

Iy = cle_Zt + 0.862€~0'83.

The initial conditions give ’

11(0):2C1+ C2+3:0

12(0) = € + O.8C2 = (.
Hence ¢; = —4 and ¢5 = 5. As the solation of our problem we thus obtain
(7) J = —d4xWpe=2t 1 55,08 4 o

In components (Fig. 79b),
= —8e7% 4 .’)je_o‘gt +3
Iy = 47 + 4708

Now comes an important idea, on which we shall elaborate further, beginning in Sec. 4.3. Figure 79a shows
I1(r) and I,(¢) as two separate curves. Figure 79b shows these two currents as a single curve [14(f), I5(f)] in the
I Iy-plane. This is a parametric representation with time ¢ as the parameter. It is often important to know in
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(5) J =Al+g, whee J=| |, A= - .
Iz -1.6 1.2 4.8

Step 2. Solving (5). Because of the vector g this is a nonhomogeneous system, and we (ry to proceed as for
a single ODE, solving first the homogeneous system J = AJ (thus J ' — AJ = @) by substituting J = xe™

This gives
T = Axe™ = Axe™, hence Ax = Ax.

Hence to obtain a nontrivial solution, we again need the eigenvalues and eigénvectors. For the present matrix

A they are derived in Example 1 in Sec. 4.0:

2 1
M=-2, P = s A= 08, xP= :
L1 , 038

Hence a “general solution” of the homogeneous system is

Jh — Clx(l)e-—zt L CZX(Z)e—O.St.

For a particular solution of the nonhomogeneous system (5), since g is constant, we {ry a constant column vector

J, = a with components a,, dg. Then J{, = (), and substitution into (5) gives Aa + g = (; in components,

—4.0aqy + 4.0ap + 120 =0
“16ay + 12ay + 48 =0.

The solution is gy = 3, ag = 0; thus a = [3} . Hence

143] (2)3—0.8?& + a;

{6) J=1J, +Jp, =cx e + cox

in components,
I =202+ cpe %43
12 = Cle_Zt + 0.8C2€—0'8t.
The initial conditions give

11(0)‘——“261+ C2+3:O

12(0) = + 0.8C2 = (.
Hence ¢; = —4 and ¢y = 5. As the solution of our problem we thus obtain
(7) J= 4xDe2 g 5@ o—O0B8t 4 4.

In components (Fig. 79b),
5L = —8 % + 5¢708% + 3

I = —de™2 + 40708

Now comes an important idea, on which we shall elaborate further, beginning in Sec. 4.3. Figure 7%a shows
I,(9) and I5(t) as two separate curves. Figure 79b shows these two currents as a single curve [I3(1), Ix(#)] in the
I1I5-plane. This is a paramefric representation with time ¢ as the parameter. It is often important to know in
which sense such a curve is traced. This can be indicated by an arrow in the sense of increasing ¢, as is shown.
The I;/5-plane is called the phase plane of our system (5), and the curve in Fig. 79b is called a trajectory. We
shall see that such “phase plane representations” are far more important than graphs as in Fig. 79a because
they will give a much better qualitative overall impression of the general behavior of whole families of solutions,

not merely of one solution as in the present case. B
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Fig. 79. Currents in Example 2

Conversion of an nth-Order ODE to a System

We show that an nth-order ODE of the general form (8) (see Theorem 1} can be converted
to a system of n first-order ODEs. This is practically and theoretically important-—
practically because it permits the study and solution of single ODEs by methods for
systems, and theoretically because it opens a way of including the theory of higher order
ODEs into that of first-order systems. This conversion is another reason for the importance
of systems, in addition to their use as models in various basic applications. The idea of
the conversion is simple and straightforward, as follows. '

o THEOREM: 1 Conversion of an ODE

An nth-order ODE

®) YW =F, 5, )

can be converted to a system of n first-order ODEs ?Jy setting
=D,

) =y v =Yy =Y =y

This system is of the form

Y1 =y2 '
Ve =3
(10) el

PROOF The first n — 1 of these # ODEs follow immediately from (9) by differentiation. Also,
¥y = Y™ by (9), so that the last equation in (10) results from the given ODE (8). B




