Section 6.5 Least-Squares Problem

Problem: What do we do when Ax = b has no solution x?

Answer: Find $\hat{\mathbf{x}}$ such that $A\hat{\mathbf{x}}$ is as "close" as possible to **b**. (Least Squares Problem)

If A is $m \times n$ and **b** is in \mathbb{R}^m , a **least-squares solution** of $A\mathbf{x} = \mathbf{b}$ is an $\hat{\mathbf{x}}$ in \mathbb{R}^n such that

$$\|\mathbf{b} - A\hat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$$

for all \mathbf{x} in \mathbf{R}^n .

Let $W = \operatorname{Col} A$ where A is $m \times n$ and $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix}$. Suppose \mathbf{b} is in \mathbf{R}^m and $\widehat{\mathbf{b}}$ =proj $_W \mathbf{b}$.

 $\hat{\mathbf{b}}$ is the point in $W = \operatorname{Col} A$ closest to \mathbf{b}

Since $\hat{\mathbf{b}}$ is in Col A, then $\hat{\mathbf{x}}$ is a vector in \mathbf{R}^n such that $\hat{\mathbf{b}} = A\hat{\mathbf{x}}$.

By the Orthogonal Projection Theorem, **z** is in W^{\perp} where $\mathbf{z} = \mathbf{b} - A\hat{\mathbf{x}}$.

Then **b** $-A\hat{\mathbf{x}}$ is orthogonal to every column of A. Meaning that

$$\mathbf{a}_{1}^{T}(\mathbf{b} - A\hat{\mathbf{x}}) = 0 \qquad \mathbf{a}_{2}^{T}(\mathbf{b} - A\hat{\mathbf{x}}) = 0 \qquad \cdots \qquad \mathbf{a}_{n}^{T}(\mathbf{b} - A\hat{\mathbf{x}}) = 0$$

$$\begin{bmatrix} \mathbf{a}_{1}^{T} \\ \mathbf{a}_{2}^{T} \\ \vdots \\ \mathbf{a}_{n}^{T} \end{bmatrix} (\mathbf{b} - A\hat{\mathbf{x}}) = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$A^{T}(\mathbf{b} - A\hat{\mathbf{x}}) = \mathbf{0}$$

$$A^{T}(\mathbf{b} - A^{T}A\hat{\mathbf{x}}) = \mathbf{0}$$

$$A^{T}(\mathbf{b} - A^{T}A\hat{\mathbf{x}}) = \mathbf{0}$$

$$A^{T}(\mathbf{b} - A^{T}A\hat{\mathbf{x}}) = \mathbf{0}$$

$$\begin{bmatrix} A^{T}A\hat{\mathbf{x}} = A^{T}\mathbf{b} \\ \text{(normal equations for } \hat{\mathbf{x}}) \end{bmatrix}$$

THEOREM 13

The set of least squares solutions of $A\mathbf{x} = \mathbf{b}$ is the set of all solutions of the normal equations $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.

EXAMPLE: Find a least squares solution to the inconsistent system Ax = b where

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 2 & 2 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

Solution: Solve $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ after first finding $A^T A$ and $A^T \mathbf{b}$.

$$A^{T}A = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 8 & 2 \\ 4 & 3 \end{bmatrix} \qquad A^{T}\mathbf{b} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 8 \\ 8 \end{bmatrix}$$

So solve the following:

$$\begin{bmatrix}
8 & 2 \\
4 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix}
8 \\
8
\end{bmatrix}$$

$$\begin{bmatrix} 8 & 2 & 8 \\ 4 & 3 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 2 \end{bmatrix} \qquad \Rightarrow \qquad \hat{\mathbf{x}} = \begin{bmatrix} \frac{1}{2} \\ 2 \end{bmatrix}$$

When $A^{T}A$ is invertible,

$$A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$$

$$(A^T A)^{-1} A^T A \hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$$

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$$

So in the last example,

$$(A^T A)^{-1} = \begin{bmatrix} 8 & 2 \\ 4 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{3}{16} & -\frac{1}{8} \\ -\frac{1}{4} & \frac{1}{2} \end{bmatrix}$$

and

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b} = \begin{bmatrix} \frac{3}{16} & -\frac{1}{8} \\ -\frac{1}{4} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 8 \\ 8 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ 2 \end{bmatrix}$$

THEOREM 14

The matrix A^TA is invertible if and only if the columns of A are linearly independent. In this case, the equation $A\mathbf{x} = \mathbf{b}$ has only one least-squares solution $\hat{\mathbf{x}}$, and it is given by

$$\hat{\mathbf{X}} = (A^T A)^{-1} A^T \mathbf{b}.$$

least-squares error = $\|\mathbf{b} - A\hat{\mathbf{x}}\|$

From the last example,

$$\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \text{ and } A\hat{\mathbf{x}} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$$

least-squares error =
$$\|\mathbf{b} - A\hat{\mathbf{x}}\| = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix} = 2$$

For another way to compute $\hat{\mathbf{x}}$, see Theorem 15 (page 414) and Example 5, page 415.