Section 6.2 Orthogonal Sets

A set of vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ in \mathbf{R}^n is called an **orthogonal set** if $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ whenever $i \neq j$.

EXAMPLE: Is
$$\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$
 an orthogonal set?

Solution: Label the vectors $\mathbf{u}_1, \mathbf{u}_2$, and \mathbf{u}_3 respectively. Then

$$\mathbf{u}_1 \cdot \mathbf{u}_2 =$$

$$\mathbf{u}_1 \cdot \mathbf{u}_3 =$$

$$\mathbf{u}_2 \cdot \mathbf{u}_3 =$$

Therefore, $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal set.

THEOREM 4

Suppose $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n and $W = \text{span}\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_p\}$. Then S is a linearly independent set and is therefore a basis for W.

Partial Proof: Suppose

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_p\mathbf{u}_p = \mathbf{0}$$

$$(c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_p\mathbf{u}_p) \cdot = \mathbf{0} \cdot$$

$$(c_1\mathbf{u}_1) \cdot \mathbf{u}_1 + (c_2\mathbf{u}_2) \cdot \mathbf{u}_1 + \dots + (c_p\mathbf{u}_p) \cdot \mathbf{u}_1 = \mathbf{0}$$

$$c_1(\mathbf{u}_1 \cdot \mathbf{u}_1) + c_2(\mathbf{u}_2 \cdot \mathbf{u}_1) + \dots + c_p(\mathbf{u}_p \cdot \mathbf{u}_1) = \mathbf{0}$$

$$c_1(\mathbf{u}_1 \cdot \mathbf{u}_1) = \mathbf{0}$$

Since $\mathbf{u}_1 \neq \mathbf{0}$, $\mathbf{u}_1 \cdot \mathbf{u}_1 > 0$ which means $c_1 = \underline{\hspace{1cm}}$.

In a similar manner, c_2, \ldots, c_p can be shown to by all 0. So S is a linearly independent set.

An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

EXAMPLE: Suppose $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ is an orthogonal basis for a subspace W of \mathbb{R}^n and suppose **y** is in W. Find c_1, \ldots, c_p so that

$$\mathbf{y} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \cdots + c_p \mathbf{u}_p.$$

Solution:

$$\mathbf{y} \cdot = (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p) \cdot$$

$$\mathbf{y} \cdot \mathbf{u}_1 = (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \cdots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1$$

$$\mathbf{y} \cdot \mathbf{u}_1 = c_1(\mathbf{u}_1 \cdot \mathbf{u}_1) + c_2(\mathbf{u}_2 \cdot \mathbf{u}_1) + \cdots + c_p(\mathbf{u}_p \cdot \mathbf{u}_1)$$

$$\mathbf{y} \cdot \mathbf{u}_1 = c_1(\mathbf{u}_1 \cdot \mathbf{u}_1)$$

$$c_1 = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1}$$

Similarly, $c_2 =$, $c_3 =$,..., $c_p =$

$$, c_3 =$$

$$c_p =$$

THEOREM 5

Let $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbf{R}^n . Then each \mathbf{y} in W has a unique representation as a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p$. In fact, if

 $\mathbf{y} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \cdots + c_p \mathbf{u}_p$

then

$$c_j = \frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}$$
 $(j = 1, \dots, p)$

EXAMPLE: Express
$$\mathbf{y} = \begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix}$$
 as a linear combination of the orthogonal basis

$$\left\{ \left[\begin{array}{c} 1 \\ -1 \\ 0 \end{array} \right], \left[\begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right] \right\}.$$

Solution:

$$\frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} = \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} = \frac{\mathbf{y} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3} =$$

$$\frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} =$$

$$\frac{\mathbf{y} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3} =$$

Hence

$$\mathbf{y} = \underline{\hspace{1cm}} \mathbf{u}_1 + \underline{\hspace{1cm}} \mathbf{u}_2 + \underline{\hspace{1cm}} \mathbf{u}_3$$

Orthogonal Projections

For a nonzero vector \mathbf{u} in \mathbf{R}^n , suppose we want to write \mathbf{y} in \mathbf{R}^n as the the following

$$\mathbf{y} = (\text{multiple of } \mathbf{u}) + (\text{multiple a vector } \perp \text{ to } \mathbf{u})$$

$$(\mathbf{y} - \alpha \mathbf{u}) \cdot \mathbf{u} = 0$$

$$\mathbf{y} \cdot \mathbf{u} - \alpha (\mathbf{u} \cdot \mathbf{u}) = 0 \qquad \Rightarrow \qquad \alpha = 0$$

 $\hat{y} = \frac{y \cdot u}{u \cdot u} u$ (orthogonal projection of y onto u)

and

$$z \,=\, y - \tfrac{y \cdot u}{u \cdot u} \, u \qquad \text{(component of y orthogonal to } u)$$

EXAMPLE: Let $\mathbf{y} = \begin{bmatrix} -8 \\ 4 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. Compute the distance from \mathbf{y} to the line through $\mathbf{0}$ and \mathbf{u} .

Solution:

$$\hat{y} = \frac{y \cdot u}{u \cdot u} u =$$

Distance from y to the line through 0 and u = distance from \hat{y} to y

$$= \, \| \, \widehat{\boldsymbol{y}} - \boldsymbol{y} \, \| \, = \,$$

Orthonormal Sets

A set of vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ in \mathbf{R}^n is called an **orthonormal set** if it is an orthogonal set of unit vectors.

If $W = \text{span}\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$, then $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ is an orthonormal basis for W.

Recall that \mathbf{v} is a unit vector if $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{\mathbf{v}^T \mathbf{v}} = 1$.

Suppose $U = [\mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3]$ where $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthonormal set.

Then
$$U^TU=\left[egin{array}{c} \mathbf{u}_1^T \ \mathbf{u}_2^T \ \mathbf{u}_3^T \end{array}\right]\left[egin{array}{c} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{array}\right]=\left[egin{array}{c} \mathbf{u}_1^T & \mathbf{u}_2 & \mathbf{u}_3 \end{array}\right]$$

It can be shown that $UU^T = I$ also. So $U^{-1} = U^T$ (such a matrix is called an **orthogonal matrix**).

THEOREM 6 An $m \times n$ matrix U has orthonormal columns if and only if $U^TU = I$.

THEOREM 7 Let U be an $m \times n$ matrix with orthonormal columns, and let \mathbf{x} and \mathbf{y} be in \mathbf{R}^n . Then

a.
$$||Ux|| = ||x||$$

b.
$$(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$$

c.
$$(U\mathbf{x}) \cdot (U\mathbf{y}) = 0$$
 if and only if $\mathbf{x} \cdot \mathbf{y} = 0$.

Proof of part b: $(U\mathbf{x}) \cdot (U\mathbf{y}) =$