4.4 Coordinate Systems

In general, people are more comfortable working with the vector space \mathbf{R}^n and its subspaces than with other types of vectors spaces and subspaces. The goal here is to *impose* coordinate systems on vector spaces, even if they are not in \mathbf{R}^n .

THEOREM 7 The Unique Representation Theorem

Let $\beta = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_1, \dots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n.$$

DEFINITION

Suppose $\beta = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a basis for a vector space V and \mathbf{x} is in V. The **coordinates of** \mathbf{x} relative to the basis β (or the β – coordinates of \mathbf{x}) are the weights c_1, \dots, c_n such that $\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$.

In this case, the vector in \mathbf{R}^n

$$[\mathbf{X}]_{\beta} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

is called the coordinate vector of x (relative to β), or the β – coordinate vector of x.

EXAMPLE: Let $\beta = \{\mathbf{b}_1, \mathbf{b}_2\}$ where $\mathbf{b}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and let $E = \{\mathbf{e}_1, \mathbf{e}_2\}$ where $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

1

Solution:

If
$$[\mathbf{x}]_{\beta} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
, then $\mathbf{x} = \underline{\qquad} \begin{bmatrix} 3 \\ 1 \end{bmatrix} + \underline{\qquad} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$.

If
$$[\mathbf{x}]_E = \begin{bmatrix} 6 \\ 5 \end{bmatrix}$$
, then $\mathbf{x} = \underline{\qquad} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \underline{\qquad} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$.

From the last example,

$$\left[\begin{array}{c} 6 \\ 5 \end{array}\right] = \left[\begin{array}{c} 3 & 0 \\ 1 & 1 \end{array}\right] \left[\begin{array}{c} 2 \\ 3 \end{array}\right].$$

For a basis $\beta = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, let

$$P_{\beta} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_n \end{bmatrix}$$
 and $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\beta} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$

Then

$$\mathbf{x} = P_{\beta}[\mathbf{x}]_{\beta}.$$

We call P_{β} the **change-of-coordinates matrix** from β to the standard basis in \mathbb{R}^n . Then

$$[\mathbf{X}]_{eta} = P_{eta}^{-1} \mathbf{X}$$

and therefore P_{β}^{-1} is a **change-of-coordinates matrix** from the standard basis in \mathbb{R}^n to the basis β .

EXAMPLE: Let
$$\mathbf{b}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\beta = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathbf{x} = \begin{bmatrix} 6 \\ 8 \end{bmatrix}$. Find the

change-of-coordinates matrix P_{β} from β to the standard basis in \mathbb{R}^2 and change-of-coordinates matrix P_{β}^{-1} from the standard basis in \mathbb{R}^2 to β .

Solution
$$P_{\beta} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$$
 and so $P_{\beta}^{-1} = \begin{bmatrix} & 3 & 0 \\ & 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} & \frac{1}{3} & 0 \\ & -\frac{1}{3} & 1 \end{bmatrix}$

(b) If
$$\mathbf{x} = \begin{bmatrix} 6 \\ 8 \end{bmatrix}$$
, then use P_{β}^{-1} to find $[\mathbf{x}]_{\beta} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$.

Solution:
$$[\mathbf{x}]_{\beta} = P_{\beta}^{-1}\mathbf{x} = \begin{bmatrix} \frac{1}{3} & 0 \\ -\frac{1}{3} & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 8 \end{bmatrix} = \begin{bmatrix} \end{bmatrix}$$

Coordinate mappings allow us to introduce coordinate systems for unfamiliar vector spaces.

Standard basis for P_2 : $\{p_1, p_2, p_3\} = \{1, t, t^2\}$

Polynomials in \mathbf{P}_2 behave like vectors in \mathbf{R}^3 . Since $a + bt + ct^2 = \underline{} \mathbf{p}_1 + \underline{} \mathbf{p}_2 + \underline{} \mathbf{p}_3$,

$$\left[a+bt+ct^{2}\right]_{\beta} = \left[\begin{array}{c} a \\ b \\ c \end{array}\right]$$

We say that the vector space \mathbf{R}^3 is isomorphic to \mathbf{P}_2 .

EXAMPLE: Parallel Worlds of \mathbb{R}^3 and \mathbb{P}_2 .

Informally, we say that vector space V is **isomorphic** to W if every vector space calculation in V is accurately reproduced in W, and vice versa.

Assume β is a basis set for vector space V. Exercise 25 (page 254) shows that a set $\{\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_p\}$ in V is linearly independent if and only if $\{[\mathbf{u}_1]_\beta,[\mathbf{u}_2]_\beta,\ldots,[\mathbf{u}_p]_\beta\}$ is linearly independent in \mathbf{R}^n .

EXAMPLE: Use coordinate vectors to determine if $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ is a linearly independent set, where $\mathbf{p}_1 = 1 - t$, $\mathbf{p}_2 = 2 - t + t^2$, and $\mathbf{p}_3 = 2t + 3t^2$.

Solution: The standard basis set for P_2 is $\beta = \{1, t, t^2\}$. So

$$[\mathbf{p}_1]_{\beta} = \left[\begin{array}{c} \\ \\ \end{array} \right], \ [\mathbf{p}_2]_{\beta} = \left[\begin{array}{c} \\ \\ \end{array} \right], \ [\mathbf{p}_3]_{\beta} = \left[\begin{array}{c} \\ \\ \end{array} \right]$$

Then

$$\begin{bmatrix} 1 & 2 & 0 \\ -1 & -1 & 2 \\ 0 & 1 & 3 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

By the IMT, $\left\{ [\mathbf{p}_1]_{\beta}, [\mathbf{p}_2]_{\beta}, [\mathbf{p}_3]_{\beta} \right\}$ is linearly _____ and therefore

 $\{\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3\}$ is linearly ______.

Coordinate vectors also allow us to associate vector spaces with subspaces of other vectors spaces.

EXAMPLE Let
$$\beta = \{\mathbf{b}_1, \mathbf{b}_2\}$$
 where $\mathbf{b}_1 = \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}$ and let $H = \text{span}\{\mathbf{b}_1, \mathbf{b}_2\}$.

Find
$$[\mathbf{x}]_{\beta}$$
, if $\mathbf{x} = \begin{bmatrix} 9 \\ 13 \\ 15 \end{bmatrix}$.

Solution: (a) Find c_1 and c_2 such that

$$c_1 \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 13 \\ 15 \end{bmatrix}$$

Corresponding augmented matrix:

$$\left[\begin{array}{ccc} 3 & 0 & 9 \\ 3 & 1 & 13 \\ 1 & 3 & 15 \end{array}\right] \sim \left[\begin{array}{ccc} 1 & 0 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{array}\right]$$

Therefore
$$c_1 = \underline{\hspace{1cm}}$$
 and $c_2 = \underline{\hspace{1cm}}$ and so $[\mathbf{x}]_{\beta} = \overline{\hspace{1cm}}$.

$$\begin{bmatrix} 9 \\ 13 \\ 15 \end{bmatrix} \text{ in } \mathbf{R}^3 \text{ is associated with the vector } \begin{bmatrix} 3 \\ 4 \end{bmatrix} \text{ in } \mathbf{R}^2$$

H is isomorphic to \mathbf{R}^2