2.1 Matrix Operations

Matrix Notation:

Two ways to denote $m \times n$ matrix A:

In terms of the *columns* of *A*:

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix}$$

In terms of the *entries* of *A*:

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & & & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix}$$

Main diagonal entries:_____

Zero matrix:

$$0 = \left[\begin{array}{ccccc} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & & \vdots & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{array} \right]$$

THEOREM 1

Let A, B, and C be matrices of the same size, and let r and s be scalars. Then

a.
$$A + B = B + A$$

$$d. r(A+B) = rA + rB$$

b.
$$(A + B) + C = A + (B + C)$$
 e. $(r + s)A = rA + sA$

e.
$$(r+s)A = rA + sA$$

$$c. A + 0 = A$$

$$f. r(sA) = (rs)A$$

Matrix Multiplication

Multiplying B and \mathbf{x} transforms \mathbf{x} into the vector $B\mathbf{x}$. In turn, if we multiply A and $B\mathbf{x}$, we transform $B\mathbf{x}$ into $A(B\mathbf{x})$. So $A(B\mathbf{x})$ is the composition of two mappings.

Define the product AB so that $A(B\mathbf{x}) = (AB)\mathbf{x}$.

Suppose *A* is $m \times n$ and *B* is $n \times p$ where

$$B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_p \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}$.

Then

$$B\mathbf{x} = x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + \dots + x_p \mathbf{b}_p$$

and

$$A(B\mathbf{x}) = A(x_1\mathbf{b}_1 + x_2\mathbf{b}_2 + \cdots + x_p\mathbf{b}_p)$$

$$= A(x_1\mathbf{b}_1) + A(x_2\mathbf{b}_2) + \cdots + A(x_p\mathbf{b}_p)$$

$$= x_1 A \mathbf{b}_1 + x_2 A \mathbf{b}_2 + \dots + x_p A \mathbf{b}_p = \begin{bmatrix} A \mathbf{b}_1 & A \mathbf{b}_2 & \dots & A \mathbf{b}_p \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}.$$

Therefore,

$$A(B\mathbf{x}) = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_p \end{bmatrix} \mathbf{x}.$$

and by defining

$$AB = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_p \end{bmatrix}$$

we have $A(B\mathbf{x}) = (AB)\mathbf{x}$.

EXAMPLE: Compute
$$AB$$
 where $A = \begin{bmatrix} 4 & -2 \\ 3 & -5 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -3 \\ 6 & -7 \end{bmatrix}$.

Solution:

$$A\mathbf{b}_{1} = \begin{bmatrix} 4 & -2 \\ 3 & -5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \end{bmatrix}, \qquad A\mathbf{b}_{2} = \begin{bmatrix} 4 & -2 \\ 3 & -5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ -7 \end{bmatrix}$$
$$= \begin{bmatrix} -4 \\ -24 \\ 6 \end{bmatrix} \qquad = \begin{bmatrix} 2 \\ 26 \\ -7 \end{bmatrix}$$

$$\Rightarrow AB = \begin{bmatrix} -4 & 2 \\ -24 & 26 \\ 6 & -7 \end{bmatrix}$$

Note that $A\mathbf{b}_1$ is a linear combination of the columns of A and $A\mathbf{b}_2$ is a linear combination of the columns of A.

Each column of AB is a linear combination of the columns of A using weights from the corresponding columns of B.

EXAMPLE: If A is 4×3 and B is 3×2 , then what are the sizes of AB and BA?

Solution:

$$BA$$
 would be
$$\begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix}$$
 which is ______

If A is $m \times n$ and B is $n \times p$, then AB is $m \times p$.

Row-Column Rule for Computing AB (alternate method)

The definition

$$AB = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_p \end{bmatrix}$$

is good for theoretical work.

When *A* and *B* have small sizes, the following method is more efficient when working by hand.

If AB is defined, let $(AB)_{ii}$ denote the entry in the ith row and jth column of AB. Then

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}.$$

$$\begin{bmatrix} b_{1j} & & \\ b_{2j} & & \\ \vdots & & \\ b_{nj} & & \end{bmatrix} = \begin{bmatrix} (AB)_{ij} & & \\ & (AB)_{ij} & & \\ & & \end{bmatrix}$$

EXAMPLE
$$A = \begin{bmatrix} 2 & 3 & 6 \\ -1 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 2 & -3 \\ 0 & 1 \\ 4 & -7 \end{bmatrix}$$
. Compute AB , if it is defined.

Solution: Since A is 2×3 and B is 3×2 , then AB is defined and AB is _____×___.

$$AB = \begin{bmatrix} \mathbf{2} & \mathbf{3} & \mathbf{6} \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{2} & -3 \\ \mathbf{0} & 1 \\ \mathbf{4} & -7 \end{bmatrix} = \begin{bmatrix} \mathbf{28} & \blacksquare \\ \blacksquare & \blacksquare \end{bmatrix}, \begin{bmatrix} \mathbf{2} & \mathbf{3} & \mathbf{6} \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 0 & 1 \\ 4 & -7 \end{bmatrix} = \begin{bmatrix} 28 & -45 \\ \mathbf{2} & \blacksquare \end{bmatrix}, \begin{bmatrix} 2 & 3 & 6 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 0 & 1 \\ 4 & -7 \end{bmatrix} = \begin{bmatrix} 28 & -45 \\ 2 & -4 \end{bmatrix}$$

So
$$AB = \begin{bmatrix} 28 & -45 \\ 2 & -4 \end{bmatrix}$$
.

THEOREM 2

Let A be $m \times n$ and let B and C have sizes for which the indicated sums and products are defined.

a.
$$A(BC) = (AB)C$$
 (associative law of multiplication)

b.
$$A(B+C) = AB + AC$$
 (left - distributive law)

c.
$$(B+C)A = BA + CA$$
 (right-distributive law)

d.
$$r(AB) = (rA)B = A(rB)$$

for any scalar r

e.
$$I_m A = A = AI_n$$
 (identity for matrix multiplication)

WARNINGS

Properties above are analogous to properties of real numbers. But **NOT ALL** real number properties correspond to matrix properties.

- 1. It is not the case that AB always equal BA. (see Example 7, page 114)
- 2. Even if AB = AC, then B may not equal C. (see Exercise 10, page 116)
- 3. It is possible for AB = 0 even if $A \neq 0$ and $B \neq 0$. (see Exercise 12, page 116)

Powers of A

$$A^k = \underbrace{A \cdots A}_{k}$$

EXAMPLE:

$$\begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix}^3 = \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 21 & 8 \end{bmatrix}$$

If A is $m \times n$, the **transpose** of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A.

EXAMPLE:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 8 \\ 7 & 6 & 5 & 4 & 3 \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} 1 & 6 & 7 \\ 2 & 7 & 6 \\ 3 & 8 & 5 \\ 4 & 9 & 4 \\ 5 & 8 & 3 \end{bmatrix}$$

EXAMPLE: Let
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ -2 & 4 \end{bmatrix}$. Compute AB , $(AB)^T$, A^TB^T and B^TA^T .

Solution:

$$AB = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix}$$

$$(AB)^{T} = \begin{bmatrix} \\ \\ \\ \end{bmatrix}$$

$$A^{T}B^{T} = \begin{bmatrix} 1 & 3 \\ 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 7 & 3 & 10 \\ 2 & 0 & -4 \\ 2 & 1 & 4 \end{bmatrix}$$

$$B^{T}A^{T} = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \end{bmatrix}$$

THEOREM 3

Let *A* and *B* denote matrices whose sizes are appropriate for the following sums and products.

- a. $(A^T)^T = A$ (I.e., the transpose of A^T is A)
- b. $(A + B)^T = A^T + B^T$
- c. For any scalar r, $(rA)^T = rA^T$
- d. $(AB)^T = B^T A^T$ (I.e. the transpose of a product of matrices equals the product of their transposes in reverse order.)

EXAMPLE: Prove that $(ABC)^T = \underline{\hspace{1cm}}$.

Solution: By Theorem 3d,

$$(ABC)^T = ((AB)C)^T = C^T ()^T = C^T () = \underline{ }$$