Section 1.9 (Through Theorem 10) The Matrix of a Linear Transformation

Identity Matrix I_n is an $n \times n$ matrix with 1's on the main left to right diagonal and 0's elsewhere. The ith column of I_n is labeled \mathbf{e}_i .

EXAMPLE:

$$I_3 = \left[\begin{array}{ccc} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{array} \right] = \left[\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Note that

In general, for \mathbf{x} in \mathbf{R}^n ,

$$I_n\mathbf{x} = \underline{\hspace{1cm}}$$

From Section 1.8, if $T : \mathbf{R}^n \to \mathbf{R}^m$ is a linear transformation, then $T(c\mathbf{u} + d\mathbf{v}) = c\mathbf{T}(\mathbf{u}) + d\mathbf{T}(\mathbf{v})$.

Generalized Result:

$$T(c_1\mathbf{v}_1+\cdots+c_p\mathbf{v}_p)=c_1T(\mathbf{v}_1)+\cdots+c_pT(\mathbf{v}_p).$$

EXAMPLE: The columns of $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Suppose T is a

linear transformation from \mathbf{R}^2 to $\mathbf{R}^{\frac{1}{3}}$ where

$$T(\mathbf{e}_1) = \begin{bmatrix} 2 \\ -3 \\ 4 \end{bmatrix}$$
 and $T(\mathbf{e}_2) = \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix}$.

Compute $T(\mathbf{x})$ for any $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Solution: A vector \mathbf{x} in \mathbf{R}^2 can be written as

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \underline{\qquad} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \underline{\qquad} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \underline{\qquad} \mathbf{e}_1 + \underline{\qquad} \mathbf{e}_2$$

Then

$$T(\mathbf{X}) = T(x_1\mathbf{e}_1 + x_2\mathbf{e}_2) = \underline{\qquad} T(\mathbf{e}_1) + \underline{\qquad} T(\mathbf{e}_2)$$

$$= \underline{\qquad} \begin{bmatrix} 2 \\ -3 \\ 4 \end{bmatrix} + \underline{\qquad} \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}.$$

Note that

$$T(\mathbf{x}) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

So

$$T(\mathbf{x}) = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) \end{bmatrix} \mathbf{x} = A\mathbf{x}$$

To get A, replace the identity matrix $\begin{bmatrix} e_1 & e_2 \end{bmatrix}$ with $\begin{bmatrix} T(e_2) & T(e_2) \end{bmatrix}$.

Theorem 10

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n .

In fact, A is the $m \times n$ matrix whose jth column is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the jth column of the identity matrix in \mathbf{R}^n .

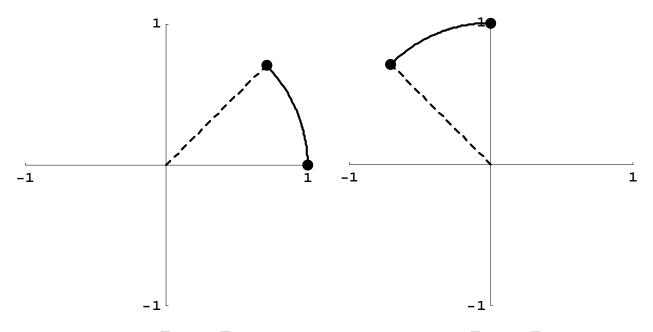
$$A = [T(\mathbf{e}_1) \quad T(\mathbf{e}_2) \quad \cdots \quad T(\mathbf{e}_n)]$$

standard matrix for the linear transformation T

Solution:

$$\begin{bmatrix} ? & ? \\ ? & ? \\ ? & ? \end{bmatrix} = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) \end{bmatrix} =$$
 (fill-in)

EXAMPLE: Find the standard matrix of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ which rotates a point about the origin through an angle of $\frac{\pi}{4}$ radians (counterclockwise).



$$T(\mathbf{e}_1) =$$

$$T(\mathbf{e}_2) =$$

$$\Rightarrow$$
 $A =$