1.8 Introduction to Linear Transformations

Another way to view $A\mathbf{x} = \mathbf{b}$:

Matrix A is an object acting on \mathbf{x} by multiplication to produce a new vector $A\mathbf{x}$ or \mathbf{b} .

EXAMPLE:

$$\begin{bmatrix} 2 & -4 \\ 3 & -6 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -8 \\ -12 \\ -4 \end{bmatrix} \qquad \begin{bmatrix} 2 & -4 \\ 3 & -6 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Suppose A is $m \times n$. Solving $A\mathbf{x} = \mathbf{b}$ amounts to finding all ____ in \mathbf{R}^n which are transformed into vector \mathbf{b} in \mathbf{R}^m through multiplication by A.

Matrix Transformations

A **transformation** T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .

$$T: \mathbf{R}^n o \mathbf{R}^m$$

Terminology:

 R^n : domain of T

 $T(\mathbf{x})$ in \mathbf{R}^m is the **image** of \mathbf{x} under the transformation T

Set of all images $T(\mathbf{x})$ is the **range** of T

EXAMPLE: Let
$$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix}$$
. Define a transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$.

Then if
$$\mathbf{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
,

$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix}$$

EXAMPLE: Let
$$A = \begin{bmatrix} 1 & -2 & 3 \\ -5 & 10 & -15 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 2 \\ -10 \end{bmatrix}$ and $\mathbf{c} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$. Then define

a transformation $T: \mathbf{R}^3 \to \mathbf{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$.

- a. Find an \mathbf{x} in \mathbf{R}^3 whose image under T is \mathbf{b} .
- b. Is there more than one \mathbf{x} under T whose image is \mathbf{b} . (uniqueness problem)
- c. Determine if \mathbf{c} is in the range of the transformation T. (existence problem)

$$\begin{bmatrix} 1 & -2 & 3 \\ -5 & 10 & -15 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -10 \end{bmatrix}$$

Augmented matrix:

$$\begin{bmatrix} 1 & -2 & 3 & 2 \\ -5 & 10 & -15 & -10 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 3 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} x_1 = 2x_2 - 3x_3 + 2 \\ x_2 \text{ is free} \\ x_3 \text{ is free} \end{array}$$

Let
$$x_2 =$$
 and $x_3 =$. Then $x_1 =$

(b) Is there an **x** for which $T(\mathbf{x}) = \mathbf{b}$?

Free variables exist \Rightarrow There is more than one **x** for which $T(\mathbf{x}) = \mathbf{b}$

(c) Is there an \mathbf{x} for which $T(\mathbf{x}) = \mathbf{c}$? This is another way of asking if $A\mathbf{x} = \mathbf{c}$ is

Augmented matrix:
$$\begin{bmatrix} 1 & -2 & 3 & 3 \\ -5 & 10 & -15 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

c is not in the _____ of *T*.

Matrix transformations have many applications - including computer graphics.

EXAMPLE: Let $A = \begin{bmatrix} .5 & 0 \\ 0 & .5 \end{bmatrix}$. The transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(\mathbf{x}) = A\mathbf{x}$ is an

example of a **contraction** transformation. The transformation $T(\mathbf{x}) = A\mathbf{x}$ can be used to move a point \mathbf{x} .

$$\mathbf{u} = \begin{bmatrix} 8 \\ 6 \end{bmatrix} \qquad T(\mathbf{u}) = \begin{bmatrix} .5 & 0 \\ 0 & .5 \end{bmatrix} \begin{bmatrix} 8 \\ 6 \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

-4

-4

Linear Transformations

If *A* is $m \times n$, then the transformation $T(\mathbf{x}) = A\mathbf{x}$ has the following properties:

$$T(\mathbf{u} + \mathbf{v}) = A(\mathbf{u} + \mathbf{v}) = \underline{\qquad} + \underline{\qquad}$$

and

$$T(c\mathbf{u}) = A(c\mathbf{u}) = \underline{\qquad} A\mathbf{u} = \underline{\qquad} T(\mathbf{u})$$

for all \mathbf{u}, \mathbf{v} in \mathbf{R}^n and all scalars c.

DEFINITION

A transformation *T* is **linear** if:

- i. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T.
- ii. $T(c\mathbf{u})=cT(\mathbf{u})$ for all \mathbf{u} in the domain of T and all scalars c.

Every matrix transformation is a **linear** transformation.

RESULT If *T* is a linear transformation, then

$$T(\mathbf{0}) = \mathbf{0}$$
 and $T(c\mathbf{u} + d\mathbf{v}) = c\mathbf{T}(\mathbf{u}) + d\mathbf{T}(\mathbf{v})$.

Proof:

$$T(\mathbf{0}) = T(0\mathbf{u}) = \underline{\qquad} T(\mathbf{u}) = \underline{\qquad}.$$

$$T(c\mathbf{u} + d\mathbf{v}) = T() + T() + \underline{T()}$$

EXAMPLE: Let
$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{y}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ and $\mathbf{y}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$. Suppose

 $T: \mathbf{R}^2 \to \mathbf{R}^3$ is a linear transformation which maps \mathbf{e}_1 into \mathbf{y}_1 and \mathbf{e}_2 into \mathbf{y}_2 . Find the images of $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Solution: First, note that

 $T(\mathbf{e}_1) = \underline{\qquad} \quad \text{and} \quad T(\mathbf{e}_2) = \underline{\qquad}.$

Also

$$\underline{}$$
 $\mathbf{e}_1 + \underline{}$ $\mathbf{e}_2 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$

Then

$$T\left(\begin{bmatrix} 3 \\ 2 \end{bmatrix}\right) = T(\underline{} \mathbf{e}_1 + \underline{} \mathbf{e}_2) = \underline{} T(\mathbf{e}_1) + \underline{} T(\mathbf{e}_2)$$

$$T(3\mathbf{e}_1 + 2\mathbf{e}_2) = 3T(\mathbf{e}_1) + 2T(\mathbf{e}_2)$$

Also

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = T(\underline{} \mathbf{e}_1 + \underline{} \mathbf{e}_2) = \underline{} T(\mathbf{e}_1) + \underline{} T(\mathbf{e}_2) =$$

EXAMPLE: Define $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that $T(x_1, x_2, x_3) = (|x_1 + x_3|, 2 + 5x_2)$. Show that T is a not a linear transformation.

Solution: Another way to write the transformation:

$$T\left(\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right]\right) = \left[\begin{array}{c} |x_1 + x_3| \\ 2 + 5x_2 \end{array}\right]$$

Provide a **counterexample** - example where $T(\mathbf{0}) = \mathbf{0}$, $T(c\mathbf{u}) = c\mathbf{T}(\mathbf{u})$ or $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ is violated.

A counterexample:

$$T(\mathbf{0}) = T \left(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right) = \left[\begin{bmatrix} \end{bmatrix} \neq \underline{ } \right]$$

which means that T is not linear.

Another counterexample: Let c=-1 and $\mathbf{u}=\begin{bmatrix} 1\\1\\1 \end{bmatrix}$. Then

$$T(c\mathbf{u}) = T \begin{pmatrix} \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} |-1+-1| \\ 2+5(-1) \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

and

$$cT(\mathbf{u}) = -1T \left[\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right] = -1 \left[\begin{bmatrix} \end{bmatrix} \right]$$

Therefore $T(c\mathbf{u}) \neq \underline{\hspace{1cm}} T(\mathbf{u})$ and therefore T is not $\underline{\hspace{1cm}}$.