1.6 Linear Independence

Recall, for example, that the solution sets of

$$\begin{bmatrix} 1 & 2 & -3 \\ 3 & 5 & 9 \\ 5 & 9 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

and the vector equation

$$x_1 \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

are identical.

The vector equation has the trivial solution $(x_1 = 0, x_2 = 0, x_3 = 0)$, but is this the *only one*?

Definition

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in \mathbf{R}^n is said to be **linearly independent** if the vector equation

$$x_1\mathbf{V}_1 + x_2\mathbf{V}_2 + \cdots + x_p\mathbf{V}_p = \mathbf{0}$$

has only the trivial solution. The set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is said to be **linearly dependent** if there exists weights c_1, \ldots, c_p , not all 0, such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_p\mathbf{v}_p=\mathbf{0}.$$

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p = \mathbf{0}$$

†

linear dependence relation

(when weights are all not zero)

EXAMPLE 1 Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix}$.

- a. Determine if $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent.
- b. If possible, find a linear dependence relation among $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

Solution: a. Examine solution of

$$x_1 \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Corresponding augmented matrix:

Since x_3 is a free variable, there are nontrivial solutions. So $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent (and not linearly independent).

(b) Reduced echelon form:
$$\begin{bmatrix} 1 & 0 & 33 & 0 \\ 0 & 1 & -18 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{cases} x_1 & = \\ x_2 & = \\ x_3 & = \end{cases}$$

Choose x_3 to be any nonzero number. Say $x_3 =$ ___. Then $x_1 =$ ___ and $x_2 =$ ___.

Therefore

$$\begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix} + \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\underline{}$$
 $\mathbf{v}_1 + \underline{}$ $\mathbf{v}_2 + \underline{}$ $\mathbf{v}_3 = \mathbf{0}$

Linear Independence of Matrix Columns

In last example, note that the linear dependence relation

$$-33\begin{bmatrix} 1\\3\\5 \end{bmatrix} + 18\begin{bmatrix} 2\\5\\9 \end{bmatrix} + 1\begin{bmatrix} -3\\9\\3 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

can be written as the matrix equation $A\mathbf{x} = \mathbf{0}$:

$$\begin{bmatrix} 1 & 2 & -3 \\ 3 & 5 & 9 \\ 5 & 9 & 3 \end{bmatrix} \begin{bmatrix} -33 \\ 18 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Each linear dependence relation among the columns of A corresponds to a nontrivial solution to $A\mathbf{x} = \mathbf{0}$.

The columns of matrix A are linearly independent if and only if the equation of $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

EXAMPLE 2 Determine if the columns of $A = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & 2 & 9 & 5 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 7 \end{bmatrix}$ are linearly dependent.

Solution: Corresponding augmented matrix of $A\mathbf{x} = \mathbf{0}$:

Answer:

Special Cases

Sometimes we can determine linear independence of a set with minimal effort.

1. A Set of One Vector

Consider the set containing one nonzero vector: $\{\mathbf{v}_1\}$

The only solution to $x_1\mathbf{v}_1 = 0$ is the ______.

So $\{\mathbf{v}_1\}$ is linearly independent when $\mathbf{v}_1 \neq \mathbf{0}$.

2. A Set of Two Vectors

EXAMPLE 3 Let $\mathbf{u}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

- a. Determine if $\{\mathbf{u}_1, \mathbf{u}_2\}$ is a linearly dependent set or a linearly independent set.
- b. Determine if $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a linearly dependent set or a linearly independent set.

Solution: (a) Notice that $\mathbf{u}_2 = \mathbf{u}_1$. Therefore

$$\underline{} \mathbf{u}_1 + \underline{} \mathbf{u}_2 = 0$$

This means that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is a linearly ______ set.

(b) Suppose

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \mathbf{0}.$$

Then $\mathbf{v}_1 = -\mathbf{v}_2$ if $c_1 \neq 0$. But this is impossible since \mathbf{v}_1 is not a multiple of \mathbf{v}_2 which means $c_1 = -\mathbf{v}_2$.

Similarly, $\mathbf{v}_2 = -\mathbf{v}_1$ if $c_2 \neq 0$. But this is impossible since \mathbf{v}_2 is not a multiple of \mathbf{v}_1 and so $c_2 = 0$.

This means that $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a linearly _____ set.

Complete: A set of two vectors is linearly independent if_____

<u>____</u>

linearly _____

linearly _____

3. A Set Containing the 0 Vector

EXAMPLE 4 Consider the set $\left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 7 \end{bmatrix} \right\}$.

A nontrivial solution to

$$x_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 4 \\ 5 \\ 7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

is $x_1 = ___, x_2 = ___, x_3 = ___.$

Theorem 9

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in \mathbf{R}^n containing the zero vector is linearly dependent.

4. A Set Containing Too Many Vectors

EXAMPLE 5 Suppose
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 7 & 6 & 5 & 4 \end{bmatrix}$$
. Explain why the columns of A are linearly dependent.

Theorem 8

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. I.e. any set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in \mathbf{R}^n is linearly dependent if p > n.

EXAMPLE 6 With the least amount of work possible, decide which of the following sets of vectors are linearly independent and give a reason for each answer.

$$\mathbf{a.} \; \left\{ \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 9 \\ 6 \\ 3 \end{bmatrix} \right\}$$

b.
$$\left\{ \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 9 \\ 6 \\ 4 \end{bmatrix} \right\}$$

c.
$$\left\{ \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 9 \\ 6 \end{bmatrix}, \begin{bmatrix} 9 \\ 5 \end{bmatrix} \right\}$$

$$\mathsf{d.} \left\{ \left[\begin{array}{c} 3 \\ 2 \\ 1 \end{array} \right], \left[\begin{array}{c} 9 \\ 6 \\ 3 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right] \right\}$$

$$\mathbf{e}. \left\{ \begin{bmatrix} 8 \\ 2 \\ 1 \\ 4 \end{bmatrix} \right\}$$

f. Columns of
$$\begin{bmatrix}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 0 \\
9 & 8 & 7 & 6 & 5 \\
4 & 3 & 2 & 1 & 8
\end{bmatrix}$$

Characterization of Linearly Dependent Sets

EXAMPLE 7 Consider the set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ in \mathbf{R}^3 in the following diagram. Is the set linearly dependent? Explain

Theorem 7

A set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent, and $\mathbf{v}_1 \neq \mathbf{0}$, then some vector \mathbf{v}_i ($i \geq 2$) is a linear combination of the preceding vectors $\mathbf{v}_1, \dots, \mathbf{v}_{i-1}$.

EXAMPLE With the least amount of work possible, decide if the following set of vectors is linearly independent.

$$\left\{ \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 9 \\ 6 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$