1.5 Solutions Sets of Linear Systems

Homogeneous System:

$$Ax = 0$$

(A is $m \times n$ and **0** is the zero vector in \mathbb{R}^m)

EXAMPLE:

$$x_1 + 10x_2 = 0$$

$$2x_1 + 20x_2 = 0$$

Corresponding matrix equation $A\mathbf{x} = \mathbf{0}$:

$$\left[\begin{array}{cc} 1 & 10 \\ 2 & 20 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right]$$

Trivial solution:

$$\mathbf{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 or $\mathbf{x} = \mathbf{0}$

The homogeneous system $A\mathbf{x} = \mathbf{0}$ always has the trivial solution, $\mathbf{x} = \mathbf{0}$. Nonzero vector solutions are called **nontrivial solutions**.

Do nontrivial solutions exist?

$$\left[\begin{array}{ccc} 1 & 10 & 0 \\ 2 & 20 & 0 \end{array}\right] \sim \left[\begin{array}{cccc} 1 & 10 & 0 \\ 0 & 0 & 0 \end{array}\right]$$

Consistent system with a free variable has infinitely many solutions.

A homogeneous equation $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions if and only if the system of equations has_____.

EXAMPLE: Determine if the following homogeneous system has nontrivial solutions and then describe the solution set.

$$2x_1 + 4x_2 - 6x_3 = 0$$

$$4x_1 + 8x_2 - 10x_3 = 0$$

Solution:

There is at least one free variable (why?)

⇒ nontrivial solutions exist

$$\left[\begin{array}{cccc} 2 & 4 & -6 & 0 \\ 4 & 8 & -10 & 0 \end{array}\right] \sim \left[\begin{array}{cccc} 1 & 2 & -3 & 0 \\ 4 & 8 & -10 & 0 \end{array}\right] \sim \left[\begin{array}{cccc} 1 & 2 & -3 & 0 \\ 0 & 0 & 2 & 0 \end{array}\right] \sim \left[\begin{array}{cccc} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right]$$

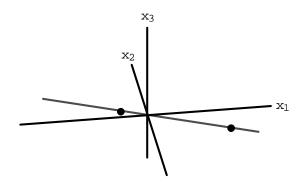
$$x_1 =$$

$$x_2$$
 is free

$$x_3 =$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2x_2 \\ x_2 \\ 0 \end{bmatrix} = \underline{\qquad} \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} = x_2 \mathbf{v}$$

Graphical representation:



solution set = span $\{v\}$ = line through 0 in \mathbb{R}^3

EXAMPLE: Describe the solution set of

$$2x_1 + 4x_2 - 6x_3 = 0$$

$$4x_1 + 8x_2 - 10x_3 = 4$$

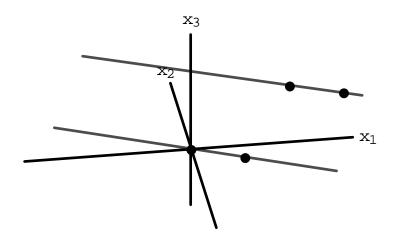
(same left side as in the previous example)

Solution:

$$\begin{bmatrix}
 2 & 4 & -6 & 0 \\
 4 & 8 & -10 & 4
 \end{bmatrix}
 \text{ row reduces to }
 \begin{bmatrix}
 1 & 2 & 0 & 6 \\
 0 & 0 & 1 & 2
 \end{bmatrix}$$

$$\mathbf{X} = \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right] =$$

$$\mathbf{x} = \begin{bmatrix} 6 \\ 0 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} = \mathbf{p} + x_2 \mathbf{v}$$



Parallel solution sets of Ax = 0 & Ax = b

Recap of Previous Two Examples

Solution of Ax = 0

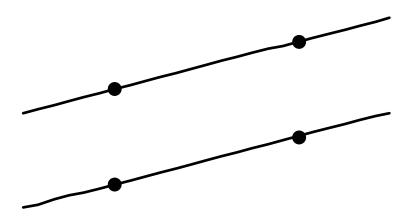
$$\mathbf{x} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} = x_2 \mathbf{v}$$

 $\mathbf{x} = x_2 \mathbf{v}$ = parametric equation of line passing through $\mathbf{0}$ and \mathbf{v}

Solution of $A\mathbf{x} = \mathbf{b}$

$$\mathbf{x} = \begin{bmatrix} 6 \\ 0 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} = \mathbf{p} + x_2 \mathbf{v}$$

 $\mathbf{x} = \mathbf{p} + x_2 \mathbf{v}$ = parametric equation of line passing through \mathbf{p} parallel to \mathbf{v}



Parallel solution sets of

$$A\mathbf{x} = \mathbf{b}$$
 and $A\mathbf{x} = \mathbf{0}$

THEOREM 6

Suppose the equation $A\mathbf{x} = \mathbf{b}$ is consistent for some given \mathbf{b} , and let \mathbf{p} be a solution. Then the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is any solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

EXAMPLE: Describe the solution set of $2x_1 - 4x_2 - 4x_3 = 0$; compare it to the solution set $2x_1 - 4x_2 - 4x_3 = 6$.

Solution: Corresponding augmented matrix to $2x_1 - 4x_2 - 4x_3 = 0$:

$$\begin{bmatrix} 2 & -4 & -4 & 0 \end{bmatrix} \sim$$
 (fill-in)

Vector form of the solution:

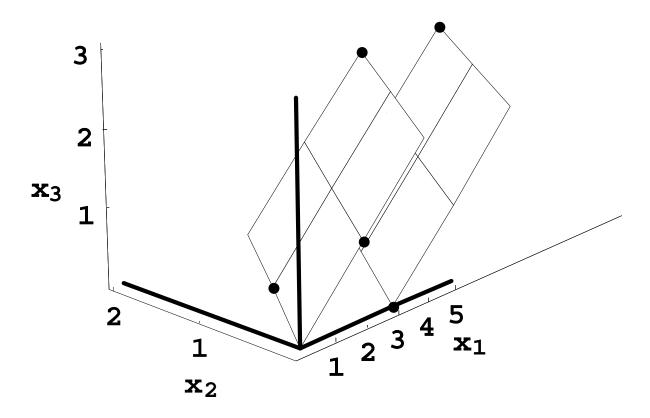
$$\mathbf{v} = \begin{bmatrix} 2x_2 + 2x_3 \\ x_2 \\ x_3 \end{bmatrix} = \underline{\qquad} \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \underline{\qquad} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

Corresponding augmented matrix to $2x_1 - 4x_2 - 4x_3 = 6$:

$$\begin{bmatrix} 2 & -4 & -4 & 6 \end{bmatrix} \sim$$
 (fill -in)

Vector form of the solution:

$$\mathbf{v} = \begin{bmatrix} 3 + 2x_2 + 2x_3 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \underline{\qquad} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$



Parallel Solution Sets of $A\mathbf{x} = \mathbf{0}$ and $A\mathbf{x} = \mathbf{b}$