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So the radius of convergence is infinite.
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The radius of convergence is 1.
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2. (a) Forn=4,a=0andf{x)=cosx,
f(a)=cosa=cos0=1
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For x near Z, sinx~1-
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Given: y is near 0. Change the problem slightly so that (c) is = ~1.
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1-1—y2 = (1 + (—y2 ))_% , 80 use the binomial series to get: (1 +(——y2 ))_Ji ~
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"1+2y +8y +16y +12sy . So, “’1‘\/2"1““2)’ +sy +16y +128y
y

By examlmng the polynomlal approxunauons one can see that they all dlffer in
the 2" term. Since y is near 0, we can ignore all of the terms beyond the 2" term.
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Thus, In(l +—2—) <l-cosy< -1. (a<b<c)
J1-3°

Examine f{x) = cos x on the interval [0,1] with a = 0.
2 4 6 8

Since we only have even powers, assume # is even and write
2

o X zztx"
CoSx =X —-—2—'-+....+(-1) ———+E,,(x)

|E, )| =|f ()~ B, ()| < o ) "
where max ‘ f ("“)(x)l < M on the interval between 0 and x.

Since tcosx and *sinx are both < 1 on the interval [0,1], we can let M= 1.
l ln+l

Thus, |E, (x)|< vl

The phrase “accurate to at least 4

a
(@) l),
decimal places”, means that the error is <10™. So, set <107,

1
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This means that we must have (n+1)!210".

Since 7!<10* <8!, n+ 1 must be at least 8, so n="7.
Thus, cos 1 ~ l——-1—+—1——-i~ 0.5402777778.
217 41 6l




(b)  If we want to be accurate to at least 6 decimal places,
then we want to make sure that IE,, (1)|<107°.

Which means that we must have (n+1)!210°.
Since 9!1<10° <10!, n+ 1 must be at least 10, son = 9.

Thus, cos 1 ~1—-—1— —1—-——1—+—1—z0.5403025794.
21 4! 6! 8!
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6. Show € =14 X+t et 2t
21 31 4] n!
1*:  Show that Z—)f—— converges for any real number x.

n=0 n!
(In other words, begin with the Taylor polynomial centered at zero and
show that its radius of convergence is infinite)

1+l
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}xl—»t?onwil*}g{lo . ='lli_£2—|{1—1*=0 for any real number x.
a | | n

So the radius of convergence is infinity, so the series converges for all x.

2" Show that the infinite series converges to e*.
The error bound tells us how close the finite series is to the function e”.

So in order for the infinite series to converge to e*, the error must
converge to zero as n —) 0,

|E, @) =|e" - (x)l 1),

where max|f ‘"“)(x)l SM for all real numbers.

(Note: £ means the (n+1)" derivative of )

Since f(x)=e" for any n, we can let M= ¢
l ln+l
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Thus, |E, (x)| s
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Since hm L —e*.0=0, (See bott £
o (n+1)! re (n+1)] (See bottom of page 500)

the error converges to zero. Which means that the series converges to e*.
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