Chapter 21: Saving Models

Section 21.3 A Limit to Compounding

James Baglama Department of Mathematics University of Rhode Island

A Limit to Compound Interest

- ☐ The following table shows a trend: More frequent compounding yields more interest.
- As the frequency of compounding increases, the interest tends to reach a limiting amount (shown in the right columns).

Comparing Compound Interest						
The Value of \$1000 at 10% Annual Interest, for Different Compounding Periods						
	Compounded	Compounded	Compounded	Compounded	Compounded	
Years	Yearly	Quarterly	Monthly	Daily	Continuously	
1	1100.00	1103.81	1104.71	1105.16	1105.17	
5	1610.51	1638.62	1645.31	1648.61	1648.72	
10	2593.74	2685.06	2707.04	2717.91	2718.28	

2

Continuous Compounding

- △ As *n* gets very large, $(1 + \frac{1}{n})^n$ approaches the constant $e \approx 2.71828$.
- ☐ For a principal *P* deposited in an account at a nominal annual rate *r*, compounded continuously, the balance after *t* years is:

$$A = P e^{rt}$$

Example: For \$1000 at an annual rate of 10%, compounded n times in the course of a single year, what is the balance at the end of the year? As the quantity gets closer and closer to \$1000($e^{0.1}$) = \$1105.17.

No matter how frequently interest is compounded, the original \$1000 at the end of one year cannot grow beyond \$1105.17.

Yield of \$1 at 100% Interest (<i>i</i> = 1) Compounded <i>n</i> Times per Year				
n	$(1+1/_n)^n$			
1	2.0000000			
5	2.4883200			
10	2.5937424			
50	2.6915880			
100	2.7048138			
1,000	2.7169239			
10,000	2.7181459			
100,000	2.7182682			
1,000,000	2.7182818			
10,000,000	2.7182818			

It approaches $e \approx 2.71828$ (which is the base of the natural logarithms).

3