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A B S T R A C T   

Harmful algal blooms (HABs) are an increasing threat to global fisheries and human health. The mitigation of 
HABs requires management strategies to successfully forecast the abundance and distribution of harmful algal 
taxa. In this study, we attempt to characterize the dynamics of 2 phytoplankton genera (Pseudo-nitzschia spp. and 
Dinophysis spp.) in Narragansett Bay, Rhode Island, using empirical dynamic modeling. We utilize a high- 
resolution Imaging FlowCytobot dataset to generate a daily-resolution time series of phytoplankton images 
and then characterize the sub-monthly (1–30 days) timescales of univariate and multivariate prediction skill for 
each taxon. Our results suggest that univariate predictability is low overall, different for each taxon and does not 
significantly vary over sub-monthly timescales. For all univariate predictions, models can rely on the inherent 
autocorrelation within each time series. When we incorporated multivariate data based on quantifiable image 
features, we found that predictability increased for both taxa and that this increase was apparent on timescales 
>7 days. Pseudo-nitzschia spp. has distinctive predictive dynamics that occur on timescales of around 16 and 25 
days. Similarly, Dinophysis spp. is most predictable on timescales of 25 days. The timescales of prediction for 
Pseudo-nitzschia spp. and Dinophysis spp. could be tied to environmental drivers such as tidal cycles, water 
temperature, wind speed, community biomass, salinity, and pH in Narragansett Bay. For most drivers, there were 
consistent effects between the environmental variables and the phytoplankton taxon. Our analysis displays the 
potential of utilizing data from automated cell imagers to forecast and monitor harmful algal blooms.   

1. Introduction 

Harmful algal blooms (HABs) are anomalous increases in phyto-
plankton abundance, biomass, or distribution that can negatively affect 
marine ecosystems and public health (Fleming et al., 2011; Berdalet 
et al., 2016; Karlson et al., 2021). The rising frequency of such events in 
the past few decades is of increasing global concern (Xiao et al., 2019; 
Gobler 2020). Some estimates of economic damage due to HABs exceed 
hundreds of millions of dollars (Anderson et al., 2000), often due to 
fisheries closures (Brown et al., 2020; Sakamoto et al., 2021), disruption 
to tourism (Smith et al., 2019; Béchard 2020) and damage to human 
health (Grattan et al., 2016; Kouakou and Poder 2019). Consequently, 
the successful prediction and mitigation of HABs is a research priority 
for state and national governments worldwide (Park et al., 2013; Brooks 
et al., 2016). 

HAB predictions often require large amounts of data from various 
sources and sophisticated modeling techniques (Franks 2018; Ralston 

and Moore 2020), as well as detailed information on local and regional 
oceanographic features (Anderson et al., 2010; Dippner et al., 2011; 
Lapucci et al., 2022). Due to the requirement of high resolution and 
consistent data, monitoring programs are implementing automated 
systems (Babin et al., 2005; Jochens et al., 2010) with extensively 
trained algorithms (Sosik and Olson 2007; Ellen et al., 2019; Orenstein 
et al., 2020) that can identify and alert local officials of the presence, 
abundance and risk of HAB development. The rapid deployment of such 
systems has greatly expanded the ability to detect HABs; however, less is 
known about the utility of imaging data for HAB prediction models. 

In this study, we explored the use of phytoplankton imaging data for 
HAB predictions in Narragansett Bay, Rhode Island (NBay). Narragan-
sett Bay is a shallow coastal marine estuary of great cultural, historical, 
and economic importance to local communities (Herndon and Sekatau 
1997; Dalton et al., 2010; Nixon and Fulweiler 2012). Coastal marine 
estuaries are highly dynamic environments that are subject to season-
ality (Carstensen et al., 2015), the influence of both freshwater and 
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seawater sources (Pilson 1985), large-scale climate phenomena (Scavia 
et al., 2002), and anthropogenic inputs of nutrients (Cundell 1973; 
Goldberg et al., 1977). Within the past decade, toxic harmful algal 
blooms have led to fisheries closures in Narragansett Bay (Bates et al., 

2018) and motivated extensive research into the potential environ-
mental drivers and species composition (Sterling et al., 2022) of the 
relevant bloom-causing phytoplankton genera. Of particular importance 
in this area are Pseudo-nitzschia spp. and Dinophysis spp. due to their 
potential toxicity and relevance for local fishery disruption. 

Natural phytoplankton populations are variable from daily, seasonal 
to decadal timescales (Chavez et al., 2003; Barton et al., 2016; Blauw 
et al., 2018). High variability in natural phytoplankton populations is 
characteristic of non-linear and chaotic dynamics (Ascioti et al., 1993; 
Smayda 1998). In this paper, we used empirical dynamic modeling 
(EDM) to predict the abundance of Pseudo-nitzschia spp. and Dinophysis 
spp. in Narragansett Bay, Rhode Island. These genera were selected for a 
couple of reasons: their role in local harmful algal blooms and the 
availability of a dynamic, regular time series that would allow for the 
use of data-driven analyses. EDM is a non-parametric framework that 
can avoid the pitfalls of typical statistical modeling by relying on 
data-driven attractor reconstruction (Perretti et al., 2013; Chang et al., 
2017). 

Our goal was to characterize the sub-monthly univariate and 
multivariate prediction timescales of Pseudo-nitzschia spp. and Dinophysis 
spp. utilizing a high temporal resolution dataset generated with an Im-
aging FlowCytobot (Olson and Sosik 2007). Automated instruments 
such as the Imaging FlowCytobot generate datasets of phytoplankton 
images and many associated features (i.e. image texture, contrast, object 
size etc.). Specifically, we aim to answer (1) How predictable are the 
harmful algal target species? (2) How does this predictability vary with 
time? and (3) Which image features best describe the dynamics of the 
taxa? Once we identified the important timescales, we also linked spe-
cific environmental drivers to the dynamics of the phytoplankton pop-
ulations. Our study did not attempt to offer detailed mechanistic 
explanations of observed phenomena, nor develop tools that might 
model the growth and termination of harmful algal blooms, but instead, 
it focused on identifying the potential of imaging data in prediction 
models. By identifying the relevant dynamical timescales of harmful 
algal blooms, we also hoped to provide local and regional management 

Table 1 
Sensitivity and precision of the automatic classifier for each of the phyto-
plankton classes.   

Sensitivity Precision 

Pseudo-nitzschia spp. (N = 626) 0.85 0.94 
Dinophysis spp. (N = 412) 0.95 0.96  

Table 2 
List of all image features used in this study and their 
units.  

Feature Units 

area pixels2 

biovolume pixels3 

major axis pixels 
minor axis pixels 
perimeter pixels 
orientation degrees 
eccentricity – 
solidity – 
texture uniformity – 
texture smoothness – 
texture gray – 
texture entropy – 
texture contrast – 
h90 pixels 
h180 pixels 
hflip pixels 
extent pixels 
equivalent diameter pixels 
convex area pixels2 

convex perimeter pixels  

Fig. 1. Time series of 2 harmful algal bloom-forming taxa in Narragansett Bay, Rhode Island (left column) and their associated autocorrelation functions (ACF; right 
column). Relative abundance is estimated from the number of unique images taken by the IFCB and classified as (a) Pseudo-nitzschia spp. and (c) Dinophysis spp. 
Autocorrelation decreases with time and varies depending on the dynamics of each specific taxon. 
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with a critical timeframe of action for the development of environmental 
policy. Our underlying assumption was that the predictability of Pseu-
do-nitzschia spp. and Dinophysis spp. in Narragansett Bay had distinct 
timescales that varied in response to environmental drivers and intrinsic 
population dynamics. 

2. Materials and methods 

2.1. Automated cell imaging 

All the time series used in this study were collected by deploying an 
Imaging FlowCytobot (IFCB) in Narragansett Bay, Rhode Island. The 
IFCB is an automated, flow-through imaging system that captures im-
ages of the extant phytoplankton community in seawater. The system 
has a maximum size limit of 150 µm and works by drawing water at 
approximately 1 m under the surface at low tide. As our IFCB was 
deployed at the end of a pier (41.492◦N, 71.419◦W), the actual sampling 
depth varied with the tidal cycle. Images can be observed in real-time 
using the IFCB dashboard (http://ifcb-dashboard.gso.uri.edu/). 

The IFCB samples approximately every 20 min depending on the 
number of cells within a given sample. We used daily aggregated IFCB 
data from 14th June 2017 to 20th October 2021, barring gaps in the time 
series due to equipment malfunction or maintenance. Our data span 

1590 days of observation with 518 days of missing data. For prediction 
tasks, all missing data points were approximated using 30-day expo-
nential moving averages (EMA) computed by the R package “imputeTS” 
(Moritz and Bartz-Beielstein 2017). We used daily aggregated data, 
instead of other shorter timescales (such as 1-hr or 12-hr) for three broad 
reasons: the influence of high time series autocorrelation, irregular gaps 
in data collection, and, to strike a balance between computational costs 
and expected analytical benefit. 

A machine-learning approach was used to identify and classify the 
phytoplankton taxa from a subset of annotated images (Sosik and Olson 
2007). All obtained images classified as Pseudo-nitzschia spp. and 
Dinophysis spp. were counted and reported as a concentration based on 
the average sampling volume for each day (images mL− 1). Higher con-
centrations of images act as a proxy of higher abundance in the natural 
environment and lower concentrations of images show that the taxon is 
rare/absent. To test the general ability to use image concentration as a 
proxy for phytoplankton abundance, we visually compared our image 
concentration time series to a long-term weekly monitoring site located 
approximately 12 km north of our IFCB location (https://web.uri.edu/ 
gso/research/plankton/). Figure S1 highlights that our IFCB image 
concentration agreed with the general pattern of Pseudo-nitzschia spp. 
abundance in Narragansett Bay (as determined by microscopy counts) 
over the duration of our time series. 

We evaluated the classifier’s performance for sensitivity and preci-
sion with a manually annotated library of images. Table 1 reports the 
performance of the classifier for Pseudo-nitzschia spp. and Dinophysis spp. 

Sensitivity =
TP

TP + FN  

Precision =
TP

TP + FP  

where TP, FP and FN were the number of true positive, false positive, 
and false negative images. 

236 image features are automatically estimated for each IFCB image 
(Sosik and Olson 2007, https://github.com/hsosik/ifcb-analysis/wiki). 
We selected 20 features for further analysis based on their relevance to 
phytoplankton morphology and ecology (Sonnet et al., 2022). The 
average daily values for the image features, scaled by the average 
sampling volume for each day, formed a multi-dimensional time series 
for each taxon. Table 2 lists all the features and their units. 

2.2. Environmental data 

We compiled data from various monitoring programs located in and 
around Narragansett Bay. Daily averages of water temperature (◦C), 
salinity (ppt), chlorophyll (μg L− 1), and pH were requested from the 
Narragansett Bay Fixed Site Monitoring Network (NBFSMN, personal 
communication: Heather Stoffel). These measurements were co-located 
with the Imaging FlowCytobot. Daily averages of wind speed (m s− 1) 
were drawn from the Kingston weather station (41.49◦N 71.54◦W; U.S. 
Climate Reference Network; https://www1.ncdc.noaa.gov/pub/dat 
a/uscrn/products/subhourly01/). Daily averages of tidal height (Mean 
Sea Level; m) were calculated from measurements at the NOAA Quonset 
Point Buoy (41◦ 35.2 N, 71◦ 24.6 W; #8454049; https://tidesandcurren 
ts.noaa.gov/). Additional environmental data, such as ambient nutrient 
concentrations, were not available at the same temporal scale as the 
imaging data used in the study. 

2.3. Univariate predictions 

We used empirical dynamic modeling (EDM) to make univariate 
predictions for the time series of each taxon. Every time series was 
normalized (i.e. subtracting the mean value of the time series and 
dividing by the standard deviation of the time series) before the appli-

Fig. 2. Univariate prediction skill (Δρ) of the time series of (a) Pseudo-nitzschia 
spp. and (b) Dinophysis spp. over a prediction horizon of 1–30 days. Model 
predictions (ρmodel) were calculated from 200 random libraries of 250 days each 
and the results were reported as an arithmetic mean with 95% confidence in-
tervals (±1.96 ×S.E.). Δρ was calculated by subtracting the autocorrelation 
coefficient at each prediction horizon. 
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Fig. 3. Multivariate prediction skill of the 
time series of Pseudo-nitzschia spp. (left col-
umn) and Dinophysis spp. (right column) 
over a prediction horizon of 1–30 days. (a) 
and (c) report prediction skill (Δρ) calcu-
lated by subtracting the autocorrelation 
coefficient at each prediction horizon, (b) 
and (d) report prediction error as the root- 
mean-squared-error (RMSE), (e) and (f) 
report prediction error as the mean- 
absolute-error (MAE). Model results were 
calculated from 500 embeddings of phyto-
plankton abundance and 3 unique image 
features. The results were reported as an 
arithmetic mean with 95% confidence in-
tervals (±1.96 × S.E.).

Fig. 4. Multivariate prediction skill of the 
time series of Pseudo-nitzschia spp. (ρ; left) 
over a prediction horizon of 1–30 days. 
Prediction skill (ρ) refers to the Pearson 
correlation coefficient between model pre-
dictions and actual observations. Model re-
sults were calculated from 1000 
embeddings of phytoplankton abundance 
and 3 unique image features. Each point is 
the outcome of a single model run. Fre-
quency of image features (right) summa-
rizes the top 5% of model outcomes and the 
image features included in these models.   
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cation of EDM. Specifically, we relied on simplex projection (Sugihara 
and May 1990) with a consistent embedding dimension of 4 and 
leave-one-out cross validation. This means that the univariate attractor 
of a time series was embedded in a 4-dimensional space using the 
original times series and successive lags of the same time series. Each 
point is described by (xt , xt− 1, xt− 2, xt− 3) where xt is the value of x at time 
point t, xt− 1 is its value at time t − 1, and so on. The embedding 
dimension was set at 4 to prevent overfitting and maximize the utili-
zation of our daily-scale time series data. Figure S2 shows how varying 
the embedding dimension affects the predictability of each taxon with 
fixed prediction intervals of 1, 7, 14 and 28 days. An embedding 
dimension of 4 allowed for reasonable descriptions across all timescales 
for both taxa, with a lower risk of overfitting our models to potentially 
noisy dynamics. The model creation and prediction sets were randomly 
selected from the entire time series in intervals of 250 days. After 
bootstrapping 200 samples for each taxon, we generated a mean pre-
diction and 95% confidence intervals (1.96 × SE). By randomizing the 
selection of model and prediction libraries, we tried to account for the 
effects of imputed data into the time series, as well as avoid the effects of 
possible non-stationarity over the 1590 days of data. 

We tested the predictability of each taxon for timescales of 1 to 30 
days. Predictability was described by ρmodel, the Pearson correlation 
coefficient, between the observed and the predicted values after 
attractor reconstruction. To account for inherent autocorrelation within 
each time series, we subtracted the absolute value of the autocorrelation 
coefficient at each timescale of prediction. The effective value of pre-
dictability was reported as Δρ, which is the arithmetic difference of the 
univariate predictability ρmodel and the autocorrelation coefficient ρauto. 
Therefore, Δρ quantifies the ability of our model to predict dynamics 
beyond autocorrelation across a range of sub-monthly timescales. Due to 
the short timescales of prediction in this study (<30 days), our dataset of 
1590 days provided reasonable coverage of all possible sub-monthly 
dynamics for these harmful algal taxa. 

2.4. Multiview embeddings (MVE) 

Multiview embeddings are an effective technique for increasing 
predictability and drawing out information from multiple related time 

series (Ye and Sugihara 2016). We used MVE to utilize the associated 
dataset of image features collected by the IFCB. Once more, the 
embedding dimension was set to 4 for all taxa and the entire time series 
was used for model and prediction libraries. We relied on leave-one-out 
cross-validation instead of separate model and prediction libraries. 

Each multivariate attractor was created by randomly selecting 3 
normalized time series of features and the original time series of image 
concentration (images mL− 1). Our goal was to predict the proxy abun-
dance of each taxon by leveraging information stored in the image 
features. Predictability was evaluated for timescales of 1–30 days and 
reported as Δρ (model predictability beyond autocorrelation), RMSE 
(root-mean-square error) and MAE (mean absolute error). We consid-
ered 500 trials of image feature combinations and reported predict-
ability as the arithmetic mean with 95% confidence intervals (1.96 ×

SE). 
For the best multivariate models (top 5% in terms of ρmodel), we re-

ported the frequency of appearance for each image feature as a pro-
portion. A proportion of 0 implies that the feature did not show up in the 
best multivariate models while a proportion of 1 implies that it was 
always present. Based on the frequency of appearance, we could deduce 
the contribution of each feature in improving the overall predictability 
of the phytoplankton species. 

2.5. Convergent cross mapping (CCM) 

Once we identified any relevant timescales of prediction, we wanted 
to understand whether there was a link between the abundance of 
harmful algal taxa and relevant environmental drivers. We used 
convergent cross mapping (CCM; Sugihara et al., 2012) to infer causa-
tion between the environmental dataset and image concentration 
(images mL− 1). Embedding dimensions were optimized (i.e. selecting the 
embedding dimension that provides the highest prediction skill ρ) to 
each environmental variable (up to a maximum of 7 to prevent over-
fitting) and library sizes ranged from 100 - 1400 in intervals of 100 days. 
There were 20 samples each for every library size and the time to pre-
diction ranged from 1–30 days. We tested whether we could infer 
causation by predicting the values of past environmental variables from 
the abundance of the harmful algal taxa. Predictability was quantified 

Fig. 5. Multivariate prediction skill of the 
time series of Dinophysis spp. (ρ; left) over a 
prediction horizon of 1–30 days. Prediction 
skill (ρ) refers to the Pearson correlation 
coefficient between model predictions and 
actual observations. Model results were 
calculated from 1000 embeddings of 
phytoplankton abundance and 3 unique 
image features. Each point is the outcome of 
a single model run. Frequency of image 
features (right) summarizes the top 5% of 
model outcomes and the image features 
included in these models.   
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by the cross-map prediction skill (ρ), where higher values indicate better 
predictions. Convergence was estimated using three tests – (1) 
Mann-Kendall trend test for ρ with increasing library size, (2) a Student’s 
t-test for the ρ distributions at the maximum and minimum library size 
and (3) by validating that the prediction skill ρ at the maximum library 
size was greater than the Pearson correlation coefficient between image 
concentration and the environmental time series. Only the predictions 
which satisfied all conditions, and were significant for both the 
Mann-Kendall and the Student’s t-test (p-value < 0.05) were deemed 
convergent. If any of the tests failed, then the causal effect of the envi-
ronmental variable on the phytoplankton taxa was deemed to be unre-
solved at those specific timescales. Cross-map prediction skill (ρ) was 

normalized to the embedding dimension by averaging ρ across predic-
tion horizons (Saberski et al., 2021). 

2.6. Software 

All the analyses were conducted in R (R Core Team 2021). For 
plotting and data visualization, we used the R packages “ggplot2” 
(Wickham 2016) and “cowplot” (Wilke 2020). EDM was applied using 
pre-built functions in the R package “rEDM” (Park et al., 2022). Addi-
tionally, the R package “Kendall” (McLeod 2022) was used to conduct 
some statistical tests. 

Fig. 6. Influence of environmental drivers on Pseudo-nitzschia spp. in Narragansett Bay quantified by the cross-map prediction skill (ρ based on convergent cross 
mapping; see Methods). The influence was measured over a prediction horizon of 1–30 days (black line). Red points indicate which models showed convergence. The 
dashed line refers to the Pearson correlation coefficient between the time series of Pseudo-nitzschia spp. abundance and the environmental variable. 
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3. Results 

Both Pseudo-nitzschia spp. and Dinophysis spp. in Narragansett Bay 
showed intermittent periods of high and low abundance in Narragansett 
Bay. The IFCB captured such bloom dynamics using the concentration of 
identified images of both taxa (Fig. 1; left column). When evaluated for 
the autocorrelation inherent within each time series, both Pseudo-nitz-
schia spp. and Dinophysis spp. had decreasing autocorrelation with time 
(Fig. 1; right column). The decrease was more rapid for Pseudo-nitzschia 
spp. (ACF < 0.25 within 7 days), whereas Dinophysis spp. showed a more 
gradual decrease over the entire 30 days. 

The univariate predictability of both time series (Δρ) was low overall 
and did not greatly change over a prediction horizon of 30 days (Fig. 2). 

The univariate predictability of Pseudo-nitzschia spp. indicated some 
promise of the model over autocorrelation on horizons of 10 days, 
whereas the results for Dinophysis spp. indicated that there is little to no 
predictability inherent within the time series beyond autocorrelation 
across all sub-monthly timescales. 

Multivariate prediction skill (Δρ), calculated using the time series of 
image abundance and 3 associated image features, was much higher 
than the univariate prediction skill for both Pseudo-nitzschia spp. and 
Dinophysis spp. (Fig. 3). Using the original time series with only 3 image 
features at a time (multivariate embedding dimension = 4) allowed for 
direct comparisons to the univariate prediction skill. The predictability 
of Pseudo-nitzschia spp. had distinctive cycles with peaks every 16 and 25 
days. An increase in model predictability over autocorrelation was most 

Fig. 7. Influence of environmental drivers on Dinophysis spp. in Narragansett Bay quantified by the cross-map prediction skill (ρ based on convergent cross mapping; 
see Methods). The influence was measured over a prediction horizon of 1–30 days (black line). Red points indicate which models showed convergence. The dashed 
line refers to the Pearson correlation coefficient between the time series of Dinophysis spp. abundance and the environmental variable. 
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prominent after a 3-day prediction horizon. The predictability of 
Dinophysis spp. was also higher than inherent autocorrelation after a 6- 
day prediction horizon. Dinophysis spp. had multiple peaks in Δρ at 
prediction horizons of 10–20 days, with a distinct peak at 25 days. The 
RMSE of the predictions also showed a distinct drop around the 25-day 
mark. 

Without accounting for autocorrelation, some multivariate models 
for both Pseudo-nitzschia spp. and Dinophysis spp. reached prediction 
skills of 0.70 and greater (Fig. 4 & 5; left). The top 5% of these multi-
variate models had a fairly uniform distribution of image features, with 
some clear exceptions. The time series of biovolume and orientation 
prominently appeared in the top multivariate models for Pseudo-nitz-
schia spp., whereas the time series of solidity and hflip were present but 
in a distinctly lower frequency compared to the other features. For 
Dinophysis spp., the time series of biovolume, texture gray and orienta-
tion were prominently present in the top multivariate models. 

Environmental influence on the populations of Pseudo-nitzschia spp. 
and Dinophysis spp., as measured by the cross-map prediction skill (ρ),
showed variable effects across different prediction horizons (Figure 6 
and 7). For Pseudo-nitzschia spp., the prediction skill of all the environ-
mental parameters converged with increasing library size. The strength 
and timescales of inferred causal influence differed across the variables. 
The influence of chlorophyll on Pseudo-nitzschia spp. had a peak at 
timescales around 28 days, whereas the influence of tidal height was 
strongest around 2 weeks. The time series of water temperature, pH, 
wind speed, and salinity showed significant and consistent effects on the 
Pseudo-nitzschia spp. time series across most sub-monthly timescales. 

For Dinophysis spp., there were more models that showed conver-
gence across all prediction horizons. The time series of Dinophysis spp. 
was consistently affected by tide height, water temperature, and pH 
across all timescales. Total biomass (chlorophyll) appeared as a signif-
icant driver of Dinophysis spp. with peaks around 5, 14 and 27 days. The 
effects of salinity were consistent and stronger in the short-term (1–3 
days). Predictability was higher than the Pearson correlation coefficient 
for most environmental variables and showed consistency, which might 
suggest specific mechanisms of causal influence. 

4. Discussion 

4.1. Predictability of Pseudo-nitzschia spp. and Dinophysis spp. 

Perturbations in phytoplankton population dynamics typically 
decorrelate within timescales of a month (Kuhn et al., 2019). When we 
tested for the inherent autocorrelation within the time series of both 
Pseudo-nitzschia spp. and Dinophysis spp., we found that the autocorre-
lation decreased significantly within the first 10 days for Pseudo-nitzschia 
spp., but Dinophysis spp. had higher autocorrelation for up to 30 days. 
After accounting for autocorrelation, the univariate predictability of 
both Pseudo-nitzschia spp. and Dinophysis spp. was low overall; however, 
the univariate predictability of Pseudo-nitzschia spp. showed some 
cyclical behavior. Our univariate models likely picked up on repetitive 
population-level mechanisms that increased or decreased abundance on 
sub-monthly timescales. Some examples of such mechanisms could 
include regular switching between periods of growth and sexual repro-
duction (D’Alelio et al., 2009; Annunziata et al., 2022), 
density-dependent interactions with parasitic protists (Berdjeb et al., 
2018), or the tidal transport of productive populations from nearby sites 
(Shanks et al., 2014). Part of the lack of univariate predictability could 
be due to the presence of measurement error and stochasticity in the 
time series of both taxa, as well as a general lack of natural predictability 
for larger diatoms and dinoflagellates (Agarwal et al., 2021). 

In the multivariate case, we found the predictability of both Pseudo- 
nitzschia spp. and Dinophysis spp. improved on timescales of greater than 
1 week. Multiview embeddings have been previously shown to improve 
the univariate predictability of short time series (Ye and Sugihara 2016). 
By leveraging information stored across multiple related image features, 

our approach of randomly creating non-lagged embeddings could have 
allowed us to create better and more reliable estimates of predictive 
dynamics (Ma et al., 2018). The cyclical predictability of Pseudo-nitz-
schia spp. was more prominent in the multivariate models, implicating 
predictable behavior on 16-day and 25-day timescales. Dinophysis spp. 
was most predictable on timescales of 25 days. Due to the presence of 
distinct timescales of predictability for both taxa, our results suggest that 
future development of HAB models would benefit by resolving dynamics 
on daily and weekly timescales. The identification of relevant ecological 
and environmental drivers of population dynamics on these timescales 
might also aid in the development of automated monitoring and 
early-warning systems. 

4.2. Relative contribution of IFCB image features 

When we evaluated the relative proportions of image features among 
the top multivariate models, the time series of biovolume was promi-
nently present for Pseudo-nitzschia spp. and Dinophysis spp. This implies 
that the time series of biovolume adds considerable information to the 
future predictability of harmful algal taxa. Biovolume estimates from 
IFCB images (Moberg and Sosik 2012) are often used as an important 
marker of phytoplankton community structure and function (Brosnahan 
et al., 2015; Oliver et al., 2021). Although image-derived biovolume 
estimates might differ from microscopy-derived estimates (Kraft et al., 
2021), cell biovolume typically varies linearly with other phytoplankton 
functional traits (Edwards et al., 2012). Our results suggest that 
including biovolume estimates and other high-performing image de-
scriptors into models for harmful algal taxa improves predictability 
beyond autocorrelation. 

Image descriptors derived from flow cytometers have found utility in 
studies of phytoplankton morphology (Sonnet et al., 2022), as well as for 
the training of different image classifiers (Mosleh et al., 2012; Zheng 
et al., 2017). In general, “features” from an IFCB image are all calculated 
from the pixels of the image and the relationships between them (see 
Table 2). As most features share the fundamental quantity underlying 
their calculations (i.e. the image itself), we expect all time series to be 
nonlinear approximations of one another. The relatively consistent 
proportions of most features in the top multivariate models indicate that 
the use of features themselves, and not necessarily their “character”, 
increases the predictability of harmful algal taxa. Unless there is a 
particular reason to prefer one feature for another (such as biovolume 
for its relationship to other traits), prediction models relying on auto-
mated imaging systems would benefit from using any associated image 
data. Detailed information on the causal relationships between image 
features for Pseudo-nitzschia spp., as well as the partial correlations be-
tween each image feature and our time series of image concentration, 
can be found in the Supplemental material. 

4.3. Potential environmental drivers 

To further investigate the timescales of prediction for both Pseudo- 
nitzschia spp. and Dinophysis spp., we evaluated any inferred causal re-
lationships between environmental drivers and the proxy abundance of 
each taxon. Consistent causal influence on either taxon would show 
variable but significant, effects across sub-monthly timescales. We found 
that both Pseudo-nitzschia spp. and Dinophysis spp. are affected by water 
temperatures, wind speed, tidal height, salinity, pH, and total biomass 
(chlorophyll). Previous studies across various regions, have hypothe-
sized correlative relationships between harmful algal blooms and these 
environmental drivers (Almandoz et al., 2007; Sildever et al., 2019; 
Zhang et al., 2020; Lima et al., 2022). In our study, convergent model 
predictions with increasing library size, which greatly exceed the 
Pearson correlation coefficients between the individual time series, 
indicate that there are causal relationships beyond simple covariance. 
None of the environmental drivers we tested overlapped with the pre-
viously quantified multivariate timescales. This implies that the 
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dynamics of both taxa in Narragansett Bay are subject to multiple 
context-dependent forces that interact with each other. Successful pre-
diction models for Pseudo-nitzschia spp. and Dinophysis spp. would need 
to incorporate the specific local conditions under which the harmful 
algal blooms develop. An ideal prediction model would attempt to 
combine data from relevant image properties and environmental drivers 
for particular timescales of prediction. Different model combinations 
could be optimized for forecasting at certain points during the 30-day 
prediction horizon. Table S3 explores the outcomes of some illustra-
tive combined models for both Pseudo-nitzschia spp. and Dinophysis spp. 
with a prediction horizon of 5, 10 and 15 days. Our results also indicate 
that there can be lags between an environmental driver and the driven 
harmful algal taxa. Future studies that attempt to predict the dynamics 
of Pseudo-nitzschia spp. and Dinophysis spp. might need to characterize 
the causal timescales of their predictors. 

As there has been rapid deployment of automated imaging systems 
for the early detection of harmful algal bloom events (Campbell et al., 
2010, 2013), our results suggest that there is potential to use such data 
sources in advanced prediction models. Monitoring programs that 
concurrently deploy other environmental and biogeochemical sensors 
might be able characterize the relevant timescales of dynamics, and 
consequently, predict the magnitude and spatial distribution of harmful 
algal events across broader regions. Although this study focuses on the 
population dynamics of the harmful algal bloom-causing taxa, our pre-
diction models could also be coupled with other broad-scale ecosystem 
models to potentially include the impacts on higher trophic levels and 
human health. 

4.4. Study limitations and future directions 

Although we have demonstrated the potential of using automated 
cell imaging data in prediction models, there are several considerations 
involved that merit further discussion. First, as our sampling location is 
fixed, the influence of different water masses and a lack of spatial in-
formation can limit real-time projections of HAB abundance across 
entire regions. Future studies should consider the concurrent deploy-
ment of multiple different systems to accurately map and forecast spatial 
population patterns. Second, as Pseudo-nitzschia spp. is a chain-forming 
diatom, the use of image concentration is not a measure of the actual 
abundance of the taxon within the water column – there can be a vari-
able number of cells within an image. Instead, image concentration is a 
measure of our ability to detect and identify the taxa. Although detection 
numbers are high when abundance is typically high (Figure S1), future 
studies might need to accurately quantify the relationship between the 
in-situ abundance of chain-forming organisms and their image detec-
tion. Third, the deployment and maintenance of IFCB systems may lead 
to some irregularities and gaps within a long-term time series. Despite 
multiple years of data collection, a large proportion of our daily-scale 
time series had to be approximated from existing observations. Our 
approach requires sufficient long-term coverage for the development of 
prediction models and future studies could evaluate alternative methods 
of data processing and interpolation of missing observations. Fourth, the 
development of harmful algal blooms likely depends on a suite of un-
known environmental triggers (such as the nutrient regime, ambient 
light levels, etc.). The identification of specific causal mechanisms 
would depend on careful experimentation in laboratory studies, where 
confounding factors can be controlled, and additive influence can be 
disentangled. 
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