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a Department of Mathematics and Statistics, University of Calgary, Calgary, AB T2N4C2, Canada
b Department of Mathematics, Washington University in St. Louis, MO 63130, USA

Received 9 June 2015; received in revised form 8 September 2016; accepted 27 November 2016
Available online 7 December 2016

Abstract

Motivated by Cont and de Larrard (2013)’s seminal Limit Order Book (LOB) model, we propose a new
model for the level I of a LOB in which the arrivals of orders and cancellations are still assumed to be
mutually independent, memoryless, and stationary, but, unlike the aforementioned paper, the information
about the standing orders at the opposite side of the book after each price change and the arrivals of new
orders within the spread are incorporated. Our main result gives a diffusion approximation for the mid-
price process, which sheds further light on the relation between the mid-price behavior at low frequencies
and some LOB features not considered in earlier works. To illustrate the applicability of the proposed
framework, we also develop a feasible method to compute several quantities of interest, such as the
distribution of the time span between price changes and the probability of consecutive price increments
conditioned on the current state of the book. These LOB model features are relevant in many applications
such as high frequency trading and intraday risk management. The proposed method is also used to develop
an efficient simulation scheme for the price dynamics, which is then applied to assess numerically the
accuracy of the diffusion approximation.
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1. Introduction

Most modern financial exchanges make use of electronic communication networks that
implement a continuous double auction trading mechanism. Two types of orders are available in
these trading platforms: limit and market orders. Broadly, a bid (ask) limit order specifies a price
at which a trader is willing to buy (sell) a determined number of shares of an asset, while a market
order is a request to immediately buy or sell a specified number of shares at the best available
prices out of all the active limit orders. Other than limit orders and market orders, cancellation
of limit orders is another common operation. The Limit Order Book (LOB) aggregates all the
outstanding limit orders at any given time and offers a unique glimpse into the forces and rules
of price formation of an asset.

With the advent of real-time and historical LOB data, LOB modeling has received substantial
attention in recent years. We refer to Gould et al. [9] for a nice survey of the extensive literature
on the subject, which, among the most relevant to our work, includes Luckock [13], Kruk [12],
Smith et al. [19], Rosu [17], Cont et al. [7], Abergel and Jedidi [1], Cont and Larrard [6], and Cont
and Larrard [5]. The different models proposed so far obviously vary in complexity and detail
depending on the applications being considered. In this work we present a new model for the
dynamics of the best bid and ask levels of a LOB, which not only is able to incorporate several
real features of LOB dynamics, but also is tractable enough for us to achieve two important
objectives. Firstly, we are able to characterize the coarse-grain dynamics of the asset’s price
process by establishing a diffusion approximation for it. More concretely, we prove that the mid-
price process of the asset, properly scaled in time and space, converges to a Brownian motion
with drift. This type of scaling limit enables us to connect the features of the process at lower
frequencies (say, minutes, hours, or days) to the statistical properties of events taking place at
the millisecond scale. A classical application of this is to analyze the behavior of the asset’s
volatility as a function of both the intensities at which LOB events take place and a measure of
the LOB’s depth. Secondly, we are capable of computing several quantities of interest such as
the distribution of the time span between price changes and the probability of consecutive price
increments conditioned on the current state of the book. These LOB model features are relevant
in many applications, but in particular, in high frequency algorithmic trading and intraday risk
management.

Our main inspiration for the present work is drawn from [6]’s seminal work, where a
Markovian model is proposed for the dynamics of the LOB’s level I (i.e., the limit orders with
the best prices to sell or buy the asset). There are two motivating factors for only considering
the level I and not the entire book. Firstly, the asset’s price is only determined by the level I
and, secondly, the information contained in the level I is key for many high-frequency trading
strategies and problems. By imposing a Poissonian order flow and some symmetry conditions on
the shape of the order book, Cont and Larrard [6] established the diffusion approximation for the
mid price process mentioned in the previous paragraph. Unfortunately, the results in [6] required
several strong assumptions, the most important of which are:

(i) a constant volume for all type of operations: market, limit, and cancellations;
(ii) a constant spread of one tick between the best ask and bid prices at all times;

(iii) constant parallel price shifts of one tick after each depletion of a level I queue;
(iv) loss of “memory”, in the sense that, after each level I queue depletion, the information on

the remaining limit orders at the side which was not depleted is reset.

The previous assumptions are, of course, idealizations. For instance, the assumption of con-
stant spread is generally reasonable for “large” tick assets, in which the tick size is comparable
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to a “typical” price increment. As illustrated in [6], for some “large tick” assets, the spread could
be equal to one tick for more than 98% of the observations within a typical day. Nevertheless, in
many situations, the constant spread assumption cannot be validated. Bouchaud et al. [3] argue
that relatively large spreads may be created by monopolistic practices of market makers, high
order processing costs, and large market orders. Pomponio and Abergel [16] (see also [15]) ar-
gue that traders keep track of the amounts of orders at the best quote in the LOB and typically
restrict the size of their market orders to be less than these amounts. But, sometimes the speed
of execution is more important than the market impact risk of large orders. In that case, orders
larger than the size of the first limit (called trades-through) may be submitted. Pomponio and
Abergel [16] argue that even though trade-throughs may rarely occur (with an occurrence prob-
ability of less than 5%), they make up for a non-negligible part of the daily-volume (up to 20%
for the DAX index future). Since every trade-through widens the spread, a model that allows for
variable spread is desirable.

In this work, we correct some of the shortcomings of the framework proposed in [6] as a way
to account for the possibility of a variable spread, as described in the previous paragraph, and the
fact that, in reality, the level I of the book is not completely reset after each price change. More
concretely, while keeping some of the assumptions therein, such as one level at each side of the
order book and a Markovian order flow with constant volume, our model keeps the information
of the active orders on the other side of the book after either the best bid or ask price has changed.
For instance, if the best bid queue gets depleted, the best bid price decreases one tick, but both the
price and outstanding orders at the best ask are preserved. In order to avoid perpetual widening of
the spread, we also allow the arrival of orders within the spread according to a Poisson process.
We refer the reader to the main body of the paper for further details about our model.

As in [6], we establish a diffusive approximation for the price process, albeit using an
essentially different method of proof. Our results build on the mathematical theory of countable
positive recurrent Harris chains (see, e.g., [14]). Furthermore, to illustrate the applicability of
our framework, we put forward a feasible procedure to compute several quantities of interest,
conditioned on the initial state of the book. Some examples of these include the distribution of
the duration between price changes, the probability of a price increase, and the probability of two
consecutive increments on the price. The reader is referred to Cont et al. [7] for applications of
these quantities to high-frequency trading. The main tool for the derived formulas is an explicit
characterization of the joint distribution of the time of a depletion at the level I and the amount of
orders at the remaining queue at such a time. Such a characterization depends on the eigenvalues
and eigenvectors of the generator of a suitable two-dimensional random walk. The developed
method is also applied to devise an efficient simulation algorithm for the dynamics of the LOB,
which is subsequently used to numerically study the convergence of the midprice process towards
its diffusive limiting process.

Let us finish this introduction with a brief discussion about the connection of our work with
some earlier literature. Abergel and Jedidi [1] also obtain a diffusive approximation for the mid-
price process; however, our model cannot be framed within their approach since the spread in
their model remains bounded, while, in our model, it can take values on Z+. Let us also remark
that our model can still account for the empirical observation of Cont and Larrard [6] that the
spread spends a large amount of time at the value of 1 by setting a large value for the intensity
of arrivals of limit orders within the spread. This feature is, however, not possible to incorporate
in [1]’s model since the intensity of arrivals at the first potential bid and ask price level is constant,
whether this level is already occupied by limit orders or not. Another relevant work is Cont and
Larrard [5], in which the assumptions of constant volume and absence of memory of Cont and
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Larrard [6] (assumptions (i) and (iv) as described above) are relaxed, but they do not establish a
diffusive approximation for the price process (see Remark 2.1 for further comparisons).

The present article is organized as follows. Section 2 introduces the model which allows
variable spread and obtains a Functional Central Limit Theorem for the midprice process.
Section 3 introduces a method to efficiently compute several quantities of interest related to the
LOB. In Section 4, we analyze, via simulation, the rate of convergence of the midprice process
to its diffusive process as well as the behavior of the spread and the asymptotic volatility in
relation to the different model’s parameters. To this end, we develop an “efficient” method to
simulate the dynamics of the LOB level I based on our results of Section 3. In Section 4, we
also compute numerically some of the quantities of interest considered in Section 3 and study
their behaviors under both our assumptions and those in [6]. Section 5 summarizes our main
conclusions. Finally, some of the technical proofs are presented in the Appendix.

2. A one-level LOB model with memory and variable spread

In this section, we introduce a new framework for the dynamics of the level I of a LOB, whose
characteristics better mimic reality as compare to those in the model introduced in [6]. Our main
result is a diffusive approximation for the mid-price process. More specifically, if {st }t≥0 denotes
the mid-price process of the stock, then, for some appropriate constants σ > 0 and m ∈ R, the
following invariance principle holds:

snt − nmt
√

n
⇒ σWt , n → ∞, (1)

where {Wt }t≥0 is a Wiener process and, hereafter, ⇒ denotes convergence in distribution.
Heuristically, if we think of 1/n as the time scale at which the process is observed, (1) says
that the price process can be well approximated by a Brownian motion with drift at “small”
scales (typically, 10 or more seconds, depending on the speed of the book events, which typically
happen at the order of milliseconds).

This section is organized as follows. We first introduce the model and necessary notation in
Section 2.1. Section 2.2 proves a Law of Large Numbers for the interarrival times between price
changes, which in turn is needed to determine the appropriate time scaling of the price process.
Finally, we proceed to obtain a Functional Central Limit Theorem (FCLT) for the price process
itself in Section 2.3.

2.1. LOB dynamics

As mentioned in the introduction, a bid (ask) limit order specifies a price at which a trader
is willing to buy (sell) a determined number of shares of an asset, while a market order is a
request to immediately buy or sell a specified number of shares at the best available prices out
of all the active limit orders. The Limit Order Book (LOB) aggregates all the active buy or sell
limit orders at any given time. Conceptually, an LOB can be visualized as a system of (possibly
empty) FIFO (first-in-first-out) queues (one for each possible tick price). Fig. 1 gives a graphical
representation of a LOB. The lowest price of all the active ask limit orders is called the ask price
and is the best available price to buy the asset with a market order. Similarly, the highest price of
all the outstanding bid limit orders is called the bid price and is the best available price to sell the
asset with a market order. In this fashion, this trading mechanism matches sell and buy market
orders with orders sitting at the best bid and ask prices, respectively. The separation between
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Fig. 1. Graphical representation of a Limit Order Book. The Bid Limit Orders (to the left) are displayed in blue, while
the Ask Limit Orders (to the right) are displayed in red. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

the ask and the bid prices is called the spread of the LOB, whereas the queues corresponding
to the best bid and ask prices are called the level I of the book. Other than limit orders and
market orders, cancellation of limit orders is another common operation, which accounts for a
considerably large fraction of the events in an order book (cf. Harris [10]). Note that a price
change would occur in either of two situations: one of the two queues at the level I gets depleted
(due to the cancellation of limit orders or the arrival of a market order) or a new limit order is
posted within the spread. More specifically, in the first situation, the best bid (ask) price would
decrease (increase) if the queue of limit orders at the best bid (ask) got depleted. In that case, the
next nonempty bid (ask) queue would become part of the new level I. In the second situation, the
best bid (ask) price would increase (decrease) if a new bid (ask) limit order were posted within
the spread, if possible.

In this work, we only consider the level I of the order book, which, as previously explained,
suffices to determine the evolution of the price process of the asset. As in [6], we also assume
constant price shifts of one tick after each price change. For example, suppose that the best bid
price is at Sb and that its corresponding queue gets depleted after the arrival of a market order
or a cancellation. Then, if we denote δ the tick size, the new best bid queue is set at the price
Sb

− δ, hence causing the spread to widen. We assume that the size of this new queue of limit
orders is generated from a distribution f b on Z+, independently of any other information on the
LOB, while the amount and position of the limit orders at the best ask level are kept unchanged.
Similarly, if the queue at the best ask price gets depleted after the arrival of a market order or
cancellation, then a new queue is generated at the price Sa

+δ, where Sa is the best ask price prior
to the arrival of the order. The size of the new queue at the best ask is assumed to be generated
from a distribution f a on Z+, independently of any other information. In that case, we assume
that the bid side of the book remains unchanged.

The distributions f a and f b are meant to reflect the stationary behavior of the queue sizes at
the next best queues after depletion. Throughout, we assume that both distributions f a and f b are
supported on {1, 2, . . . , N∗

}, for some fixed N∗
∈ Z+, which can be chosen arbitrarily large. This

simplifying assumption is imposed in order to guarantee the recurrence of the underlying Markov
chain driving the dynamics of the price process. Also, for simplicity, the tick is set to be δ = 1.

When the spread is more than 1, there is also the possibility of a price change due to the
arrival of a new set of orders within the spread at either the ask or bid side of the LOB. In the
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former case, the best ask price decreases by δ, while the bid side remains unchanged. In the latter
case, the best bid price increases by δ, while the other side of the order book does not change.
As before, the size of a new queue of limit orders is generated from the distribution f a or f b,
independently of any other variables, depending on whether the new set of limit orders is at the
ask or bid side.1

We now proceed to give a formal mathematical formulation of the LOB dynamics. To that
end, we need some notation:

(i) In what follows, ζ0 denotes the initial spread, while ζi , for i ≥ 1, denotes the spread after
the i th price change. The sizes of the best ask and bid queues at time t are denoted by qa

t
and qb

t , respectively. Also, for i ≥ 1, τi represents the time span between the (i − 1)th and
i th price changes and we set τ0 = 0.

(ii) Throughout, {Ŷ a,i
}i≥0 and {Ŷ b,i

}i≥0 are independent sequences of i.i.d. random variables,
taking values on ΩN∗ := {1, 2, . . . , N∗

}, and with respective distributions f a and f b. These
will indicate the amount of orders at the best ask or bid queues after that particular side
changes in price.

(iii) Let {La
i (ζ )}i≥0,ζ∈Z+

and {Lb
i (ζ )}i≥0,ζ∈Z+

be independent sequences of independent random
variables such that, for every i ∈ N+, La

i (ζ ) and Lb
i (ζ ) are exponentially distributed with

parameter α1{ζ>1}.2 These variables are also independent of any other variables in the
system. Hereafter, L i (ζ ) := La

i (ζ ) ∧ Lb
i (ζ ). We shall interpret La

i (ζ ) and Lb
i (ζ ) as the

times for a new set of orders to arrive at the ask and bid side, respectively, after the i th-price
change, when the spread is at the value ζ .

(iv) For any starting point x ∈ Ω̄N∗ := {0, 1, . . . , N∗
}, let Q(x) := {Qt (x)}t≥0 be a continuous

time Markov process with state space Ω̄N∗ such that Q0(x) = x and its transition matrix
Q : Ω̄N∗ × Ω̄N∗ → R is given by:

Q j, j+1 = λ, for 0 ≤ j ≤ N∗
− 1, Q j, j−1 = υ, for 1 ≤ j ≤ N∗,

Q j, j = −(υ + λ), for 1 ≤ j ≤ N∗
− 1, Q N∗,N∗ = −υ, (2)

Q j,ℓ = 0, otherwise,

where υ := µ+ θ and λ, µ, and θ are interpreted as the intensity of arrivals of limit orders
at the level I, market orders, and cancellations, respectively.

(v) Finally, for any i ≥ 0 and x ∈ Ω̄N∗ , we let Qa,i (x) := {Qa,i
t (x)}t≥0 and Qb,i (x) :=

{Qb,i
t (x)}t≥0 be processes such that

Qa,i (x)
D
= Qb,i (x)

D
= Q(x), (3)

and the collection of processes {Qa,i (x), Qb,i (x)}i≥0,x∈Ω̄N∗
are mutually independent, and

also independent of the processes introduced in the points (ii)–(iii).

We are ready to give a formal construction of the LOB dynamics. Fix τ0 = 0 and define the
processes

Xa,0
t := Qa,0

t (xa
0 ), Xb,0

t := Qb,0
t (xb

0 ), (4)

1 Our results are still valid if one takes these distributions to be different from the one used when a level I queue gets
depleted.

2 In particular, L i (1) = Mi (1) = ∞, a.s., for all i .



J.A. Chávez-Casillas, J.E. Figueroa-López / Stochastic Processes and their Applications 127 (2017) 2447–2481 2453

for some arbitrary, possibly random, initial queue sizes (xa
0 , xb

0 ) ∈ Ω2
N∗ , which are also assumed

to be independent of any of the other processes considered in the points (i)–(v) above. With the
notation

σ a,1
:= inf


t ≥ 0 : Xa,0

t = 0


∧ La
0(ζ0), σ b,1

:= inf


t ≥ 0 : Xb,0
t = 0


∧ Lb

0(ζ0),

at hand, the time of the first price change can now be defined by

T1 := τ1 := σ a,1
∧ σ b,1, (5)

while, for t ∈ [0, T1), the queue sizes at the best ask and bid prices are respectively given by

qa
t = Xa,0

t , qb
t = Xb,0

t .

The number of orders at each side of the LOB and the spread at time T1 are then set as

qa
T1

:= xa
1 := Ŷ a,11{τ1=σ

a,1} + Xa,0
τ1
1{τ1=σ

b,1},

qb
T1

:= xb
1 := Ŷ b,11{τ1=σ

b,1} + Xb,0
τ1
1{τ1=σ

a,1},

ζ1 = ζ0 + 1τ1<La
0(ζ0)∧Lb

0(ζ0)
 − 1{τ1=La

0(ζ0)}
− 1τ1=Lb

0(ζ0)
.

This process is continued recursively. Concretely, for i ≥ 1, we set

qa
t := Xa,i

t−Ti
, qb

t := Xb,i
t−Ti

, for t ∈

Ti , Ti+1) , Ti+1 := Ti + τi+1,

τi+1 := σ a,i+1
∧ σ b,i+1,

ζi+1 = ζi + 1τi+1<La
i (ζi )∧Lb

i (ζi )
 − 1{τi =La

i (ζi )}
− 1τi =Lb

i (ζi )


where

Xa,i
t = Qa,i

t (xa
i ), Xb,i

t = Qb,i
t (xb

i ),

σ a,i+1
= inf


t > 0 : Xa,i

t = 0


∧ La
i (ζi ),

σ b,i+1
= inf


t > 0 : Xb,i

t = 0


∧ Lb
i (ζi ),

xa
i+1 := Ŷ a,i+11{τi+1=σ

a,i+1} + Xa,i
τi+1

1{τi+1=σ
b,i+1},

xb
i+1 := Ŷ b,i+11{τi+1=σ

b,i+1} + Xb,i
τi+1

1{τi+1=σ
a,i+1}.

The above formulation justifies the following identities:

P ( (x̃k, ζk, τk) ∈ B × C × D| (x̃k−1, ζk−1) = (x̃, ζ ))

= P ( (x̃1, ζ1, τ1) ∈ B × C × D| (x̃0, ζ0) = (x̃, ζ )) , (6)

P

(x̃k, ζk, τk) ∈ B × C × D| {(x̃i , ζi , τi )}

k−1
i=0


= P ( (x̃k, ζk, τk) ∈ B × C × D| (x̃k−1, ζk−1)) , (7)

where x̃k := (xb
k , xa

k ), and xb
k and xa

k respectively represent the sizes at the best bid and ask
queues after the kth prices change. In particular, it follows that

τk ⊥
{(x̃i−1,ζi−1)}i≥0

(τk−1, . . . , τ1), k ≥ 2. (8)
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The above identity also implies the mutual independence of {τ1, . . . , τn} given {(x̃i−1, ζi−1)}i≥0.
Furthermore, it is easy to see that the process

(Ξt ,Υt ) :=

n
k=0

(x̃k, ζk)1[Tk ,Tk+1)(t)

is semimarkov in the sense of Çinlar [4].

Remark 2.1. As mentioned in the introduction, one of the key features of the model proposed
above is the incorporation of memory. Other recent works have also considered this feature.
Notably, Cont and Larrard [5] assume that the level I queue sizes after each price change, qTi ,
is a function g(qT −

i
, εi ) of the level I queue sizes before the price change, qT −

i
, and a sequence

of i.i.d. random innovations {εi }i≥1 := {(εb
i , ε

a
i )}i≥1. One of the examples considered therein

is the case of “pegged limit orders” in which qa
Ti

= βqa
T −

i
+ εa

i and qb
Ti

= εb
i , when the best

bid queue gets depleted (with a similar relation holding for the case when the best ask queue
gets depleted). Here, β ∈ [0, 1] is a constant and (εb

i , ε
a
i ) have a distribution F in Z2

+. However,
Assumption 3 in [5] precludes the situation where εa

i = 0, a.s., and β = 1, which is the type of
memory we consider in this work. Let us also remark that Cont and Larrard [5] do not establish
a diffusive approximation for the price process, but rather, a heavy traffic approximation for the
queue sizes of the LOB level I as a Markovian jump–diffusion process on the first quadrant. On
the interior of the first quadrant, the process follows a planar Brownian motion with some given
drift and covariance matrix. Every time that the process hits one of the axis, this is then shifted
to the interior of the quadrant (according to some rules). Therefore, as described in Proposition 1
in [6], the price process can be approximated by a random walk, which moves one tick to the left
or right depending on whether the just described jump–diffusion process hits the x- or y-axis.
Note that this is not the same type of continuous diffusive approximation for the price process as
the one considered in this work.

2.2. A law of large numbers for the modified interarrival times

Our first ingredient towards (1) is to establish a law of large numbers (LLN) for the time
of the nth-price change, Tn =

n
k=1 τk , using ergodic results for Markov chains. To that

end, we first introduce some needed notation. Let Z = {Z t }t∈N denote a Markov chain on
a probability space (Ω ,F ,P) with countable state space Ξ and transition probability matrix
P : Ξ × Ξ → [0, 1]. For any probability measure µ = {µ(ŷ), ŷ ∈ Ξ } on Ξ , ŷ ∈ Ξ , and
A ⊂ Ξ Z+ = {(z1, z2, . . .) | zi ∈ Ξ }, we define

Pŷ(Z q ∈ A) := P(Z q ∈ A|Z0 = ŷ), Pµ(Z q ∈ A) :=


ŷ∈Ξ

µ(ŷ)Pŷ(Z q ∈ A).

As usual, Eµ denotes the expectation with respect to the probability measure Pµ. We say that an
event A occurs P∗-a.s. if A occurs Pŷ-a.s. for all ŷ ∈ Ξ .

Let us recall that an irreducible Markov chain on a countable state space Ξ is either transient
or recurrent, while a set A is called Harris recurrent if

Pz


∞

n=1

1{Zn∈A} = ∞


= 1, z ∈ A.
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A Markov chain is called Harris recurrent if it is irreducible and every set A is Harris recurrent.
Also, the Markov chain Z is called positive if it is irreducible and admits an invariant probability
measure, while a positive and Harris recurrent chain is called positive Harris (cf. Chapter 10 [14]).
The following result from [14] (Theorem 17.0.1 therein) is key to obtain the aforementioned
LLN.

Theorem 2.2. Suppose that {Z t }t∈N is a positive Harris chain with invariant probability measure
π . Then, for any g satisfying π(|g|) :=


x π(x)|g(x)| < ∞,

lim
n→∞

1
n

n
t=1

g(Z t ) = π(g), P∗-a.s.

In the sequel, we shall use Theorem 2.2 to show a LLN for Tn =
n

i=1 τi by expressing each τi
in terms of an appropriate Markov chain Z := {Z t }t∈N. Concretely, throughout the remaining of
this subsection, we take

Z := {Z t }t≥1 := {(x̃t−1, ζt−1, x̃t , ζt )}t≥1 , (9)

where we recall that x̃t := (xb
t , xa

t ) and ζt respectively represent the number of orders at the
book’s level I (bid and ask) and the spread after the t th price change (see Section 2.1 for details
about the notation). By (7), we can see that Z is a Markov chain with countable state space

Ξ :=


(y1, c1, y2, c2) | y1 = (ya

1 , yb
1 ) ∈ Ω2

N∗ ,

y2 = (ya
2 , yb

2 ) ∈ Ω2
N∗ , c1, c2 ∈ Z+, |c1 − c2| = 1


.

Furthermore, fixing Un := (x̃n, ζn) and noting that U := {Un}n≥0 is itself a Markov chain by
(6)–(7), it follows that

P(ŷ, ẑ) := P(Zn = ẑ | Zn−1 = ŷ) = P((Un−1,Un) = ẑ | (Un−2,Un−1) = ŷ)

= P(Un = (z2, d2) | Un−1 = (z1, d1)),

where ŷ := (y1, c1, y2, c2) ∈ Ξ and ẑ := (z1, d1, z2, d2) ∈ Ξ with (y2, c2) = (z1, d1).
Our first objective is to prove that we can apply Theorem 2.2 to the chain Z introduced

in (9). Since, for a countable state Markov chain, irreducibility reduces to see that all states
communicate to one another, by the description of the dynamics of Z given in the previous
section, Z is clearly irreducible. Moreover, the Markov chain Z has an invariant probability
measure provided that Z is positive recurrent (cf. [2, Asmussen, Corollary I.3.6]). Furthermore,
in that case, Z will also be positive Harris chain, since, for a countable-state Markov chain,
Harris recurrence is equivalent to plain recurrence (see the discussion below Theorem 9.0.1
in [14]). So, it remains to prove that Z is indeed positive recurrent, as stated by the following
result.

Theorem 2.3. If α ≥ µ+ θ , then the Markov chain Z := {Z t }t≥1 := {(x̃t−1, ζt−1, x̃t , ζt )}t≥1 is
positive recurrent.

Before proving the previous result, we state some needed results and lemmas. A well-
known sufficient condition for a Markov chain to be positive recurrent over a countable state
space is given by the following so-called Foster or mean drift conditions (cf. Theorem I.5.3 in



2456 J.A. Chávez-Casillas, J.E. Figueroa-López / Stochastic Processes and their Applications 127 (2017) 2447–2481

Asmussen [2]) for some function h : Ξ → R, a constant ϵ > 0, and a finite set F ⊂ Ξ :

(i) inf
ẑ∈Ξ

h(ẑ) > −∞, (ii)

ẑ∈Ξ

P(ŷ, ẑ)h(ẑ) < ∞, ŷ ∈ F,

(iii)

ẑ∈Ξ

P(ŷ, ẑ)h(ẑ) < h(ŷ)− ϵ, ŷ ∉ F.
(10)

In order to verify that Z satisfies the previous conditions, we need two preliminary results. The
following result constructs a super-harmonic function ϕ, outside the set F0 := {ŷ ∈ Ξ : ŷ =

(y1, 2, y2, 1)}. Recall that ϕ is said to be a super-harmonic function (cf. Section 17.1.2 in [14])
at some ŷ ∈ Ξ if

(Pϕ)(ŷ) :=


ẑ∈Ξ

P(ŷ, ẑ)ϕ(ẑ) ≤ ϕ(ŷ). (11)

The proof of the next result is deferred to Appendix.

Lemma 2.4. Under the notation in Section 2.1, let ς(x) := inf{t > 0 : Qa,0
t (x1) ∧ Qb,0

t (x2) =

0}, for x := (x1, x2), and let L := La
1(2) ∧ Lb

1(2) (i.e., L is exponentially distributed with rate
2α). Also, for any ŷ = (y1, j ± 1, y2, j) ∈ Ξ , let ϕ(ŷ) : Ξ → R be given by

ϕ((y1, j ± 1, y2, j)) := ϕ( j)

:=




1 +

√
1 − 4p1(1 − pN∗)

2p1

 j

if p1(1 − pN∗) <
1
4
,

1
2p1

 j

if p1(1 − pN∗) =
1
4
,

1 − pN∗

p1

 j
2

cos( jθ) if p1(1 − pN∗) >
1
4
,

(12)

where

p1 := P(L > ς((1, 1))), pN∗ := P(L > ς((N∗, N∗))),

θ := arctan(


4p1(1 − pN∗)− 1),

Then, ϕ is a super-harmonic function for the process Z given in (9), at any ŷ ∈ Ξ \ F0, where
F0 := {ŷ ∈ Ξ : ŷ = (y1, 2, y2, 1)}.

The next result is crucial to construct the function h satisfying the conditions in (10). Its proof
is also deferred to Appendix.

Lemma 2.5. Using the notation of Lemma 2.4, for any α ≥ µ + θ , it holds that lim j→∞ ϕ( j)
= ∞.

Finally, we can prove that the Markov chain Z is positive recurrent.

Proof of 2.3. Consider the function ϕ(ŷ) = ϕ((y1, j ± 1, y2, j)) = ϕ( j) as given by Eq. (12).
Then, by the proof of Lemma 2.4, we know that,

ϕ( j − 1)(1 − pN∗)+ ϕ( j + 1)p1 = ϕ( j). (13)

Take any ϵ ∈ (0, 1) and define h(ŷ) = ϕ(ŷ) − ϵ/(p1 − pN∗), and h( j) = h(ŷ), for any
ŷ = (y1, j ± 1, y2, j). Notice that p1 > pN∗ and, by Lemma 2.5, h( j) → ∞ as j → ∞.
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Let Θ ∈ R be such that for j > Θ , we have that ϕ( j) > ϵ/(p1 − pN∗), and let also
F = {ŷ ∈ Ξ : ŷ = (y1, z1, y2, z2), z2 ≤ Θ + 1}. Notice that F is a finite set. From the
definition of h and the fact that P(ŷ, ẑ) > 0 for only finitely many ẑ, it is clear that h satisfies
the first two Foster conditions shown in (10). On the other hand, following similar steps as in the
proof of Lemma 2.4, we have that, for every ŷ ∉ F ,

ẑ∈Ξ

P(ŷ, ẑ)h(ẑ) = h( j − 1)P(N < ς(y2))+ h( j + 1)P(ς(y2) < N )

= (ϕ( j − 1)− ϵ/(p1 − pN∗))P(N < ς(y2))

+ (ϕ( j + 1)− ϵ/(p1 − pN∗))P(ς(y2) < N )

≤ (ϕ( j − 1)− ϵ/(p1 − pN∗))(1 − pN∗)+ (ϕ( j + 1)− ϵ/(p1 − pN∗))p1

= ϕ( j)− ϵ(1 − pN∗ + p1)/(p1 − pN∗)

= h( j)− ϵ = h(ŷ)− ϵ.

This proves the last Foster condition given in (10) and the fact that Z is positive recurrent
follows. �

Once we have proved that Z satisfies the hypothesis of Theorem 2.2, we now introduce the
functions on which the theorem is applied. For any x̂ = (x0, c0, x1, c1) ∈ Ξ , let

f (x̂) := E(τ1|x̂) := E (τ1| (x̃0, ζ0) = (x0, c0), (x̃1, ζ1) = (x1, c1)) ,

gt (x̂) := P(τ1 > t | x̂) := P(τ1 > t |(x̃0, ζ0) = (x0, c0), (x̃1, ζ1) = (x1, c1)).

We have the following result, whose proof is deferred to the Appendix:

Lemma 2.6. Suppose that the conditions of Theorem 2.3 hold and let π be the invariance
probability of the chain Z. Then, P∗-a.s.,

(i) lim
n→∞

1
n

n
k=1

f (Zk) = Eπ (τ1), (ii) lim
n→∞

1
n

n
k=1

gt (Zk) = Pπ (τ1 > t). (14)

In order to obtain the LLN for the interarrival times {τi }i≥1, we shall show that the Laplace
transform of the random variables Tn = τ1 + · · · + τn , properly scaled, converges to the Laplace
transform of a random variable T , for which we need the following:

Proposition 2.7. For u ∈ R+ and x̂ = (x0, c0, x1, c1) ∈ Ξ , define the functions

G(u|x̂) := E


e−uτ1
 (x̃0, ζ0, x̃1, ζ1) = (x0, c0, x1, c1)


,

κ(x̂) := E (−τ1| (x̃0, ζ0, x̃1, ζ1) = (x0, c0, x1, c1)) .

Then, under the assumption of Lemma 2.5, for any u ∈ [0,∞],

lim
n→∞

n
k=1

ln G
 u

n

 x̃k−1, ζk−1, x̃k, ζk


= −uEπ (τ1), P∗-a.s., (15)

where π is the stationary measure of the Markov chain {Zn}n≥0.

Proof. First note that the statement is trivial for u = 0. By (47), τ1 < ∞ a.s., thus,
E


e−uτ1
 x̃0, ζ0, x̃1, ζ1


> 0 a.s. Assume now that u ∈ (0,∞), then, by Jensen’s inequality,

1
u

ln G(u|x̃0, ζ0, x̃1, ζ1) ≥
1
u

E


ln e−uτ1
 x̃0, ζ0, x̃1, ζ1


= κ(x̃0, ζ0, x̃1, ζ1).
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Therefore, ln G
 u

n

 x̃0, ζ0, x̃1, ζ1


≥
u
n κ(x̃0, ζ0, x̃1, ζ1) and, thus,

n
k=1

ln G
u

n

 x̃k−1, ζk−1, x̃k, ζk


≥

u

n

n
k=1

κ(x̃k−1, ζk−1, x̃k, ζk), (16)

which, by Eq. (14-i), implies that,

lim inf
n→∞

n
k=1

ln G
u

n

 x̃k−1, ζk−1, x̃k, ζk


≥ lim inf

n→∞

u

n

n
k=1

κ(x̃k−1, ζk−1, x̃k, ζk)

= −uEπ (τ1) P∗-a.s.

Next, note that

1
u

ln G(u|x̃0, ζ0, x̃1, ζ1) ≤ E


e−uτ1 − 1
u

 x̃0, ζ0, x̃1, ζ1


=


∞

0
−e−utP


τ1 > t | x̃0, ζ0, x̃1, ζ1


dt,

where for the first inequality we used that ln(x) ≤ x − 1, for x > 0, and for the last equality
we used the identity E(g(X)) = g(0) +


∞

0 g′(t)P[X > t]dt , which is valid for any positive
random variable X and monotonic differentiable function g : [0,∞) → R. Therefore, we have
that:

ln G
u

n

 x̃0, ζ0, x̃1, ζ1


≤

u

n


∞

0
−e−

u
n tP


τ1 > t | x̃0, ζ0, x̃1, ζ1


dt.

This last inequality, Fatou’s Lemma, and Eq. (14-i) yield,

lim sup
n→∞

n
k=1

ln G
u

n

 x̃k−1, ζk−1, x̃k, ζk


≤ lim sup

n→∞

n
k=1

−
u

n


∞

0
e−

u
n tP (τ1 > t | x̃k−1, ζk−1, x̃k, ζk) dt

≤


∞

0
lim sup

n→∞


−ue−

u
n t
1

n

n
k=1

P (τ1 > t | x̃k−1, ζk−1, x̃k, ζk)


dt

=


∞

0
−uPπ (τ1 > t) dt = −uEπ (τ1), P∗-a.s. (17)

Together (16) and (17) imply (15). �

We are now ready to show the main result of this section.

Theorem 2.8. Under the assumptions of Proposition 2.7, we have

1
n

n
k=1

τk
P
→ Eπ (τ1), as n → ∞, (18)

where π is the stationary measure of the Markov chain {Zn}n≥0.
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Proof. Let ϕn(u) := Eπ


e−un−1 n
k=1 τk


and Fn := σ((x̃k, ζk) : k ≤ n). By the conditional

independence in (8),

ϕn(u) = E


n

k=1

E


e−un−1τk

Fn



= E


n

k=1

E


e−un−1τk

 x̃k−1, ζk−1, x̃k, ζk


= E

e

n
k=1

ln G ( u
n |x̃k−1,ζk−1,x̃k ,ζk)

 .
Since for any positive x , ln(x) ≤ x − 1,

ln G
u

n

 x̃0, ζ0, x̃1, ζ1


≤ G

u

n

 x̃0, ζ0, x̃1, ζ1


− 1

= E


e−
u
n τ1 − 1

 x̃0, ζ0, x̃1, ζ1


≤ 0,

and, therefore, for every n,

exp


n

k=1

ln G
 u

n

 x̃k−1, ζk−1, x̃k, ζk


≤ 1

and, by Dominated Convergence Theorem and Proposition 2.7, we get

lim
n→∞

ϕn(u) = lim
n→∞

E

e
−u
n

n
k=1

τk

 = e−uEπ (τ1).

Finally, since τk is supported on the positive numbers, by the continuity theorem for Laplace
transforms (see theorem 2 in section XIII.1 in [8]), we obtain (18). �

2.3. Long-run dynamics of the price process

In this section, we obtain a diffusive approximation for the dynamics of the midprice process
of the model defined in Section 2.1. Throughout, st denotes the stock’s midprice at time
t ∈ [0,∞), while τn represents the time elapsed between the (n − 1)th and the nth price
change as described in Section 2.1. Let {ũn}n≥1 be the sequence of midprice changes. Clearly,
our assumptions for the LOB dynamics described in Section 2.1 imply that ũn ∈ {−1/2, 1/2} .

It is also easy to see that the midprice process is given by

st := s0 +

Nt
j=1

ũ j , (19)

where hereafter Nt := max{n | τ1 + · · · + τn ≤ t} denotes the number of price changes up to
time t . In this section, we establish the relation (1), for some constants σ > 0 and m.

Recall from Section 2.1 that Un := (x̃n, ζn) = ((xb
n , xa

n ), ζn), the number of orders in the level
I of the book and the spread after the nth price change, is a Markov chain (cf. Eqs. (6)–(7)). Also,
recall that, for i ≥ 0, Qa,i (x) and Qb,i (x) are independent continuous-time Markov processes
with common generator defined by (1). Define ςn := inf{t > 0 : Qa,n

t (x̃a
n−1)∧ Qb,n

t (x̃b
n−1) = 0}
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and also consider the following events:

An =


Q b,n
ςn
(x̃ b

n−1) = 0, ζn−1 = 1 or Q b,n
ςn
(x̃ b

n−1) = 0, ζn−1 > 1, Ln(ζn−1) ≥ ςn


,

Bn =


Ln(ζn−1) < ςn, Ln(ζn−1) = La
n(ζn−1), ζn−1 > 1


,

Cn =


Q a,n
ςn
(x̃ a

n−1) = 0, ζn−1 = 1 or Ln(ζn−1) ≥ ςn, Q a,n
ςn
(x̃ a

n−1) = 0, ζn−1 > 1

,

Dn =


Ln(ζn−1) < ςn, Ln(ζn−1) = Lb

n(ζn−1), ζn−1 > 1

,

where {La
k (ζ )}k,ζ∈Z+

, {Lb
k(ζ )}k,ζ∈Z+

and {Lk(ζ )}k,ζ∈Z+
are the random variables defined in

Section 2.1.
A positive price change would occur at time Tn if, either the ask queue got depleted (event

An above) or a new queue arrived at the bid side (event Bn). Similarly, a negative price change
would occur if either the bid queue got depleted (event Cn) or a new queue arrived at the ask side
(event Dn). Therefore,

ũn :=
1
2


1{An} + 1{Bn}


−

1
2


1{Cn} + 1{Dn}


, (20)

represents the nth price change, for n ≥ 1.
As in the preceding section, an important step for analyzing the price changes would be to

express those in terms of an appropriate Markov chain. Let Λ := {z = (y1, c1, u) : y1 ∈

Ω2
N∗ , c1 ∈ Z+, u ∈ {−1/2, 1/2}} and

Vn := (x̃n, ζn, ũn), (21)

for n ≥ 1. Note that V := {Vn}n≥0 is a Markov chain over Λ since x̃n, ζn and ũn depend only
on (x̃n−1, ζn−1). Moreover, one can see that the states of V communicate to one another and,
thus, V is irreducible. Also, provided that the assumptions of Lemmas 2.4 and 2.5 hold, one
can prove that V is recurrent, similarly to the proof of Theorem 2.3, and V will then be Harris
recurrent due to the countability of V ’s state space. As a consequence, V would also be positive
Harris. Hereafter, we denote the stationary measure and the transition probabilities of V by ν and
Pext(ȳ, z̄), respectively.

As mentioned above, our main goal is to establish the coarse-grained behavior of the price
process (19). In order to do so, we first analyze the convergence of the process W n

:=
n

j=1 ũ j ,
properly rescaled. To this end, the following Functional Central Limit Theorem (FCLT) for
Markov Chains on a countable state space will be useful:

Theorem 2.9 (Meyn and Tweedie [14], Theorem 17.4.4). Suppose that {Vn}n≥0 is positive
Harris on a countable state space Λ with transition and stationary probability measures Pext

and ν, respectively. Let h be a function on Λ for which a solution ĥ to the Poisson equation,

ĥ − Pextĥ = h − ν(h), (22)

exists with ν(ĥ2) < ∞. Consider the partial sums of the centered functional h̄(Vk) := h(Vk) −

ν(h),

Sn(h̄) :=

n
k=1

h̄(Vk), (23)
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and let rn(t) be the continuous piece-wise linear function that interpolates the values of
Sn(h̄)


n≥0; i.e.,

rn(t) := S⌊nt⌋(h̄)+ (nt − ⌊nt⌋)

S⌊nt⌋+1(h̄)− S⌊nt⌋(h̄)


. (24)

Then, if the constant

γ 2(h) := ν


ĥ2
− (Pextĥ)2


(25)

is positive, it holds that,
rn(t)
nγ 2(h)


t≥0

⇒ {Wt }t≥0 , n → ∞. (26)

Remark 2.10. By taking t = 1, it follows that

√
n


1
n

n
k=1

h(Vk)− ν(h)


⇒ N (0, γ 2(h)).

The proof of the next result is deferred to the Appendix.

Theorem 2.11. Let V := {Vn}n≥1 = {(x̃n, ζn, ũn)}n≥1 be the Markov chain defined on (21) with
stationary probability measure ν. Then, for h : Λ → R given by h(x, c, u) = u, there
exists a solution to the Poisson equation ĥ with ν(ĥ2) < ∞. Furthermore, the invariance
principle (26) holds true and the variance γ 2(h) admits the representation

γ 2(h) = Eν


h̄2(V1)


+ 2
∞

k=2

Eν

h̄(V1)h̄(Vk)


, (27)

where h̄ = h − ν(h) and the sum converges absolutely.

In the following, we will write fn
P
∼ gn if limn→∞ fn/gn = 1, in probability. The following

result is the final ingredient towards (1):

Lemma 2.12. Using the notation of Section 2.2,

Ntn
P
∼

tn

Eπ (τ1)
, as n → ∞, (28)

where we recall that Nt = max{n | τ1 + · · · + τn ≤ t} and π is the stationary measure of the
chain Zn = (x̃n−1, ζn−1, x̃n, ζn), whose existence is guaranteed by Theorem 2.3.

Proof. Throughout, let tn := tn. Since Ntn denote the number of price changes up to time tn ,

τ1 + · · · + τNtn

Ntn
≤

tn
Ntn

<
τ1 + · · · + τNtn +1

Ntn

and, thus, by (18), as n → ∞, tn
Ntn

P
→ Eπ (τ1), which in turn implies (28). �

Finally, we can state the main result on this section.
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Theorem 2.13. Let {st }t≥0 be the price process as defined in Eq. (19). Then,
√

n


stn

n
−

ν(h)

Eπ (τ1)
t


t≥0

⇒ {γ (h)Wt }t≥0 , as n → ∞, (29)

where the variance γ 2(h) is given as in Eq. (27).

Proof. Throughout, let tn := tn. Let us recall that st = s0 +
Nt

j=1 ũ j and ũn = h(Vn), for the
Markov chain {Vn}n≥0 and h : Λ → R given by h(y, c, u) = u. Now, we decompose the process
s̄tn := n1/2


stn/n − tν(h)/Eπ (τ1)


as:

s̄tn =
s0
√

n
In

+
1

√
n

[tn/Eπ (τ1)]
j=1


ũ j − ν(h)


  

IIn

+


1

√
n

Ntn
j=1

ũ j −
1

√
n

[tn/Eπ (τ1)]
j=1

ũ j


  

IIIn

+


1

√
n

[tn/Eπ (τ1)]
j=1

ν(h)−
√

n
tν(h)

Eπ (τ1)


  

IVn

,

where, as in Theorem 2.11, ν is the stationary measure of the Markov chain {Vn}n≥0. As n → ∞,
clearly, In ⇒ 0. Also, by Theorem 2.11,

IIn ⇒ γ (h)2Wt ,

where γ 2(h) is given by Eq. (27). Now, since ũ j ∈


1
2 ,−

1
2


, for any ϵ > 0,

P


Ntn
j=1

ũ j −

[tn/Eπ (τ1)]
j=1

ũ j

 ≥ ϵ
√

n


≤ P


Ntn ∨[tn/Eπ (τ1)]

j=Ntn ∧[tn/Eπ (τ1)]

ũ j

 ≥ ϵ
√

n


≤ P


1
2

Ntn − [tn/Eπ (τ1)]
 ≥ ϵ

√
n


≤ P

 Ntn

[tn/Eπ (τ1)]
− 1

 ≥
2ϵ

√
n

[tn/Eπ (τ1)]


,

which, by Lemma 2.12, converges to 0 as n → ∞. Thus, IIIn converges to 0 in probability.
Finally, since IVn = ν(h) [tn/Eπ (τ1)]√

n
−

√
n tν(h)

Eπ (τ1)
is such that 0 ≤ −IVn <

ν(h)
√

n
, it follows that

IVn → 0, as n → ∞, and, thus, we conclude (29).

3. Computation of some LOB features of interest

In this section we develop some numerical tools to evaluate some LOB model features
of practical relevance such as the distribution of the time span between price changes, the
probability of a price increase, and the probability of two consecutive price increments. The
proposed method is based on an explicit characterization of the joint distribution of the time
and position at which a certain two-dimensional Markov chain starting in the first quadrant hits
the coordinate axes. The developed tools will also be used in Section 4 to devise an efficient
simulation algorithm for the midprice dynamics of the order book.
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Recall that Ω̄N∗ := {0, 1, 2, . . . , N∗
} and ΩN∗ := {1, 2, . . . , N∗

}. Throughout this section, we
let {Y (x, y)}(x,y)∈Ω2

N∗
be a collection of independent processes such that, for each (x, y) ∈ Ω2

N∗ ,

Y (x, y) := {Yt (x, y)}t∈N :=


Qa,0

t (x) , Qb,0
t (y)


t∈N

, (30)

where Qa,0(x) := {Qa,0
t (x)}t≥0 and Qb,0(x) := {Qb,0

t (x)}t≥0 are defined as in Section 2.1 (see
Eq. (3)). We also set

AA := {(0, 1), (0, 2), . . . , (0, N∗)}, AB := {(1, 0), (2, 0), . . . , (N∗, 0)},

A := AA ∪ AB,

ς(x, y) := inf{t > 0 : Yt (x, y) ∈ A }, L := La
∧ Lb,

where La and Lb are independent exponential variables with parameter α. These variables are
meant to represent the times for a new set of orders to arrive at the ask and bid side, respectively.

Finally,
D
= denotes equality in distribution.

3.1. Distribution of the duration between price changes

Here, we develop a numerical method to find the distribution of the first price change time
τ1 given that, initially at time 0, there are x orders at the bid, y at the ask, and the spread is z.
To this end, we first compute the joint distribution of the vector (ς(x, y), Yς(x,y)(x, y)). This is
obtained via the following two lemmas, whose proofs can be found in the Appendix

Lemma 3.1. Suppose that, for each fixed ā := (ā1, ā2) ∈ A , uā : [0, T ] × Ω̄2
N∗ → R satisfies

the following system of differential equations:
−
∂

∂t
+ L


uā(t, x, y)


t=T −r

= 0, for 0 ≤ r < T, (x, y) ∈ Ω2
N∗

uā(T − r, x, y) = 1{(x,y)=ā}, for 0 ≤ r ≤ T, (x, y) ∈ A ,

uā(0, x, y) = 1{(x,y)=ā}, for (x, y) ∈ Ω̄2
N∗ ,

(31)

where L u(t, x, y) is the finite difference operator given by

L u(t, x, y)

=



λ(u+

1 + u+

2 )+ υ(u−

1 + u−

2 )− 2(λ+ υ)u, (x, y) ∈ {1, 2, . . . , N∗
− 1}

2,

λu+

2 + υ(u−

1 + u−

2 )− (λ+ 2υ)u, x = N∗, y ∈ {1, 2, . . . , N∗
− 1},

λu+

1 + υ(u−

1 + u−

2 )− (λ+ 2υ)u, x ∈ {1, 2, . . . , N∗
− 1}, y = N∗,

υ(u−

1 + u−

2 )− 2υu, (x, y) = (N∗, N∗),

0, (x, y) ∈ A ,

(32)

and u+

1 = u(t, x + 1, y), u+

2 = u(t, x, y + 1), u−

1 = u(t, x − 1, y), u−

2 = u(t, x, y − 1), and
u = u(t, x, y). Then, for t > 0, (x, y) ∈ Ω̄2

N∗ , and ā := (ā1, ā2) ∈ A ,

uā(t, x, y) := P

ς(x, y) ≤ t, Yς(x,y)(x, y) = ā


. (33)

The next result proves the existence of a solution u to the system (31) by giving an explicit
representation of u in terms of the eigenvalues and eigenvectors of a certain finite difference



2464 J.A. Chávez-Casillas, J.E. Figueroa-López / Stochastic Processes and their Applications 127 (2017) 2447–2481

operator. As a result, we obtain as well an explicit formulation of the joint distribution of
(ς(x, y), Yς(x,y)(x, y)). Below, we let

a + 1 :=


ā + (0, 1), if ā ∈ {(1, 0), (2, 0), . . . , (N∗, 0)}
ā + (1, 0), if ā ∈ {(0, 1), (0, 2), . . . , (0, N∗)}.

Proposition 3.2. Let ∆ be the symmetric finite difference operator defined for functions w :

Ω̄2
N∗ → R as

1w(x, y)

=



w+

1 + w+

2 + w−

1 + w−

2 − 4w, (x, y) ∈ {1, 2, . . . , N∗
− 1}

2

w+

2 + w−

1 + w−

2 −


4 −


λ

υ


w, x = N∗, y ∈ {1, 2, . . . , N∗

− 1}

w+

1 + w−

1 + w−

2 −


4 −


λ

υ


w, x ∈ {1, 2, . . . , N∗

− 1}, y = N∗

w−

1 + w−

2 −


4 − 2


λ

υ


w, (x, y) = (N∗, N∗)

0, (x, y) ∈ A ,

(34)

where w+

1 = w(x + 1, y), w+

2 = w(x, y + 1), w−

1 = w(x − 1, y), w−

2 = w(x, y − 1), and

w = w(x, y). Let {ξk}
N∗2

k=1 be the eigenvalues of ∆ and { fk(x, y)}N∗2

k=1 be their corresponding

eigenvectors so that they constitute an orthonormal basis of RN∗2
. For ā := (ā1, ā2) ∈ A , let

uā : [0, T ] × Ω̄2
N∗ → R be defined by

uā(t, x, y)

=


λ

υ

 ā1+ā2−x−y
2

 N∗2
k=1

√
λυ fk


a + 1


2(λ+ υ)−

√
λυ(4 + ξk)


1 − e

−t

2(λ+υ)−(4+ξk )

√
λυ


× fk(x, y)1
(x,y)∈Ω2

N∗

 + 1{(x,y)=ā}


. (35)

Then, the function uā satisfies the system of differential equations (31) and, therefore, the
identity (33) holds true.

Remark 3.3. We can rewrite Eq. (35) as:

uā(t, x, y) := χ
ā1+ā2−x−y

2

N∗2
k=1

fk

a + 1


2

χ1/2 − χ−1/2

2
− ξk


1 − e

−2λt

χ−1/2

−1
2

−
ξk
2 χ

−1/2


× fk(x, y)1
(x,y)∈Ω2

N∗

 + χ
ā1+ā2−x−y

2 1{(x,y)=ā},

where χ := λ/υ. The previous expression shows that, as t gets larger, the joint probability
distribution P


ς(x, y) ≤ t, Yς(x,y)(x, y) = ā


depends on the parameters υ and λ mostly

through the quotient χ = λ/υ. Let us also point out that the eigenvalues of ∆ can be proven
to be non-positive and, thus, uā(T, x, y) ∈ [0, 1].
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We are now ready to compute the distribution Fτ1 (t |x, y, z) := P[τ1 ≤ t | xa
0 = x, xb

0 =

y, ζ0 = z] of the time τ1 it takes for the price to change conditioned on the initial state of
the book. For simplicity of notation, throughout τ(x, y, z) represents a random time such that
P(τ (x, y, z) ≤ t) = P[τ1 ≤ t | xa

0 = x, xb
0 = y, ζ0 = z], for any t ≥ 0. It is clear that

τ(x, y, 1)
D
= ς(x, y) and, thus, from Eq. (35), for (x, y) ∉ A ,

Fτ1 (t |x, y, z) =


λ

υ

−
x+y

2 N∗2
k=1

√
λυςk

2(λ+ υ)−
√
λυ(4 + ξk)

×


1 − e−t (2(λ+υ)−(4+ξk )

√
λυ)


fk(x, y), (36)

where

ςk :=


ā∈A


λ

υ

 ā1+ā2
2

fk

a + 1


. (37)

On the other hand, for z ≥ 2, we have that τ(x, y, z)
D
= ς(x, y)∧L , where as before L represents

the arrival time of a limit order within the spread. Therefore, from the independence of ς(x, y)
and L , for any z ≥ 2 and (x, y) ∉ A ,

Fτ1(t |x, y, z) = P[L ≤ t] + P[ς(x, y) ≤ t]P[L > t] = (1 − e−2αt )+ Fτ1(t |x, y, 1)e−2αt . (38)

The expressions (36)–(38) provide an efficient numerical method to compute the distribution
of the time span between price changes given some initial level I LOB setup. The method is
relatively efficient since the main task in their evaluation is the computation of the eigenvalues

{ξk}
N∗2

k=1 and eigenvectors { fk(x, y)}N∗2

k=1, which has to be done only once, for any t ≥ 0 and
z ∈ {1, 2, . . .}.

3.2. Probability of a price increase

We now consider the probability of a price increase conditioned on the current state of the
order book:

p(x, y, z) := P


Price increase | xorders at Bid, yorders at Ask, and a spread z

,

for (x, y) ∉ A .

A price increase occurs if the best ask queue gets depleted or if a new set of orders arrives at the
bid side. Recall from Lemma 3.1 that uā(t, x, y) := P


ς(x, y) ≤ t, Yς(x,y)(x, y) = ā


has an

explicit form given by Eq. (35). Set

u B(t, x, y) := P

ς(x, y) ≤ t, Yς(x,y) ∈ AB


=


ā∈AB

uā(t, x, y), (39)

and note that, if the spread is z = 1,

p(x, y, 1) = u B(∞, x, y) =


λ

υ

−
x+y

2 N∗2
k=1

√
λυ ςk,B

2(λ+ υ)−
√
λυ(4 + ξk)

fk(x, y), (40)



2466 J.A. Chávez-Casillas, J.E. Figueroa-López / Stochastic Processes and their Applications 127 (2017) 2447–2481

where

ςk,B :=


ā∈AB


λ

υ

 ā1+ā2
2

fk

a + 1


.

In order to find p(x, y, z) for z ≥ 2, note that

p(x, y, z) = P

ς(x, y) ≤ L , Yς(x,y)(x, y) ∈ AB


+ P


ς(x, y) > L , L = Lb


=: p1(x, y)+ p2(x, y). (41)

By conditioning on L and recalling that L ∼ exp(2α),

p1(x, y) = 2α


∞

0
u B(t, x, y)e−2αt dt

=


λ

υ

−
x+y

2 N∗2
k=1

√
λυ ςk,B

2(λ+ υ)−
√
λυ(4 + ξk)

×


1 −

2α

2(λ+ υ + α)− (4 + ξk)
√
λυ


fk(x, y). (42)

For the second term, using the symmetry between La and Lb, p2(x, y) =
1
2P [ς(x, y) ≥ N ] and,

thus,

p2(x, y) =
1
2


1 − 2α


∞

0
P [ς(x, y) ≤ t] e−2αt dt



=
1
2

1 −


λ

υ

−
x+y

2 N∗2
k=1

√
λυςk

2(λ+ υ)−
√
λυ(4 + ξk)

×


1 −

2α

2(λ+ υ + α)− (4 + ξk)
√
λυ


fk(x, y)

 , (43)

where ςk is defined as in (37). Again, once the eigenvalues and eigenvectors of ∆ have been
computed, one can readily compute p(x, y, z) via (42)–(43), for any (x, y) ∈ Ω2

N∗ and z ∈ Z+.

3.3. Probability of two consecutive price increments

Let p̂(x, y, z) be the probability of two consecutive increments in the price given that initially
there were x orders at the best bid, y orders at the best ask, and a spread of z. These probabilities
are highly dependent on the initial spread. The case of an initial spread of 1 is relatively easier to
analyze than any other spread due to the possibility of a new set of orders within the spread before
the depletion of any of the level I queues. As will be shown below, in the latter situation, we will
have to consider a probability of the form P


L < ς(x, y), YL(x, y) ∈ {(1, j), . . . , (N∗, j)}


, for

any j . The aforementioned probability will be reformulated in terms of the solution to a certain
initial value problem along the lines of Proposition 3.2.

Recall that every time there is a price change, a new number of orders in the LOB side that
got depleted is generated from a discrete distribution, f a or f b, supported on {1, 2, . . . , N∗

},
depending on whether the best ask or bid queues got depleted. For simplicity, in what follows
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we assume that f := f a
= f b. Denote H a random variable with distribution f . In addition to

the collection of random walks {Y (x, y)}(x,y)∈Ω2
N∗

described at the beginning of Section 3.1, we

also need to consider another independent copy {Ỹ (x, y)}(x,y)∈Ω2
N∗

and fix ς̃ (x, y) := inf{t >

0 : Ỹt (x, y) ∈ A }. Similarly, in addition to (La, Lb), we consider an independent copy (L̃a, L̃b)

and fix L̃ := L̃a
∧ L̃b. We are ready to compute p̂(x, y, z).

For z = 1, clearly,

p̂(x, y, 1) =

N∗
i=1

N∗
j=1

P

Yς(x,y)(x, y) = ( j, 0), H = i, ς̃( j, i) ≤ L̃, Ỹ 2

ς̃ ( j,i)( j, i) ∈ AB



+

N∗
i=1

N∗
j=1

P

Yς(x,y)(x, y) = ( j, 0), H = i, ς̃( j, i) ≥ L̃, L̃ = L̃b



=

N∗
i=1

N∗
j=1

u( j,0)(∞, x, y) f (i)p( j, i, 2),

where we recall that p(x, y, 2) denotes the probability of a price increase if there are x orders
at the bid, y orders at the ask, and a spread of 2. The probability p(x, y, 2) can be computed
according to (41), while u( j,0)(∞, x, y) can readily be found from (35) by making t → ∞. It
is worth mentioning that the case z = 1 is arguably the most important in practice since, as
empirically observed in several studies, the spread spends a great deal of time at level 1.

Next, let AB j := {(1, j), (2, j), . . . , (N∗, j)}. Now, for z = 2,

p̂(x, y, 2) =

N∗
i=1

N∗
j=1

P[ς(x, y) ≤ L , Yς(x,y)(x, y) = ( j, 0), H = i, ς̃( j, i) ≤ L̃,

Ỹς̃ ( j,i)( j, i) ∈ AB]

+

N∗
i=1

N∗
j=1

P[ς(x, y) ≤ L , Yς(x,y)(x, y) = ( j, 0), H = i, ς̃( j, i) ≥ L̃, L̃ = L̃b
]

+

N∗
i=1

N∗
j=1

P[L < ς(x, y), L = Lb, YL(x, y) ∈ AB j , H = i, Ỹς̃ (i, j)(i, j) ∈ AB].

Hence, using that P

L ≤ ς(x, y), L = La, Ya(x, y) ∈ AB j


= P


L ≤ ς(x, y), L = Lb,

YL(x, y) ∈ AB j


, we can write

p̂(x, y, 2) =

N∗
i=1

N∗
j=1

f (i)


2α


∞

0
u( j,0)(t, x, y)e−2αt dt


p( j, i, 2)

+
1
2

P

L < ς(x, y), YL(x, y) ∈ AB j


p(i, j, 1)


.

The probability p(x, y, 1) can be computed according to (40), while 2α


∞

0 u( j,0)(t, x, y)e−2αt dt
can readily be found from (35). The problem of computing P


L ≤ ς(x, y), YL(x, y) ∈ AB j


is
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analyzed below. Before that, let us note that, using similar arguments,

p̂(x, y, 3) =

N∗
i=1

N∗
j=1

f (i)


2α


∞

0
u( j,0)(t, x, y)e−2αt dt


p( j, i, 2)

+
1
2

P

L < ς(x, y), YL(x, y) ∈ AB j


p(i, j, 2)


.

A similar identity holds for p̂(x, y, z) with z ≥ 4. Therefore, the only remaining step is
the computation of P


L ≤ ς(x, y), YL(x, y) ∈ AB j


. This can be done by first computing

v j (t, x, y) := P[t < ς(x, y), Yt (x, y) ∈ AB j ] using similar arguments to those used in
Proposition 3.2. More concretely, it turns out that v j (t, x, y) solves the initial value problem:


−
∂

∂t
+ L


v j (t, x, y)


t=T −r

= 0 for 0 ≤ r ≤ T, (x, y) ∈ {1, 2, . . . , N∗
}
2,

v j (T − r, x, y) = 0 for 0 ≤ r ≤ T, (x, y) ∈ A ,

v j (0, x, y) = 1
(x,y)∈AB j

 for (x, y) ∈ {0, 1, 2, . . . , N∗
}
2.

(44)

4. Numerical examples

The purpose of this section is twofold. First, we analyze numerically the convergence of the
midprice process towards its limiting diffusive process as established by Theorem 2.13. Second,
we compute some of the quantities of interest described in Section 3 and numerically study
their behaviors under our assumptions and those in [6]. For the first problem, we develop a new
simulation scheme for the price process, which is more efficient than the direct simulation of all
the LOB events (i.e., limit, market, and cancellation orders).

Recall that the input parameters of the model are the rates λ, µ, θ , and α. The first three
parameters refer to the arrival rates of limit orders, market orders, and cancellation, respectively,
while α is the rate at which a new set of limit orders arrive in-between the bid–ask spread.
Also, the distributions f b and f a , for the sizes of queues at the best bid and ask price after
the respective best bid and ask price changes, have to be considered. For simplicity, we set
f := f a

= f b and recall that we are assuming that f a, f b are supported on the finite set
{1, . . . , N∗

}.
In the subsequent numerical examples, we use the empirically estimated intensities described

in Table 1, which are borrowed from [6] (see Table 3 therein). All the time measurements are in
seconds. The maximum queue size N∗ is assumed to be 10 units, with each unit representing a
batch of 100 shares. Unless otherwise specified, the initial level I queue’s configuration is set to
be (x, y) = (5, 5), while the initial spread is ζ0 = 4. The distribution f is taken to be uniformly
distributed in {1, . . . , N∗

}. Finally, two different choices of α are considered: α = υ + 1 and
α = 2υ.

4.1. Simulation and convergence assessment

The most natural (and naive) way to simulate the price dynamics consists of generating all
the LOB events or, equivalently, all the arrival times of orders (limit, market, and cancellations)
from the corresponding Poisson process, until the time that either the bid or ask queue gets
depleted or a new set of limit orders arrives within the spread (if possible). We then reset the
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Table 1
Estimates for the intensities of limit orders and market orders+cancellations,
in number of batches per second (each batch representing 100 shares) on June
26th, 2008, as reported in [6].

Stock λ υ := µ+ θ

Citigroup 2204 2331
General electric 317 325
General motors 102 104

Table 2
Estimates of the expected return E[st ]/t , normalized variance Var(st )/t , and expected time Eπ (τ ) between price
changes.

Case Scenario 1: λ = 2204, υ = 2331 Scenario 2: λ = 317, υ = 325 Scenario 3: λ = 102, υ = 104
α = 2332 α = 4662 α = 326 α = 650 α = 105 α = 210
t =

60
t =

300
t =

60
t =

300
t =

60
t =

300
t =

60
t =

300
t =

60
t =

300
t =

60
t =

300

E[st ]/t −0.93 −0.90 −0.86 −0.96 −0.09 −0.15 −0.21 −0.23 −0.13 −0.09 −0.09 −0.06
Var[st ]/t 291.51 280.64 348.89 278.84 39.08 34.48 36.62 41.87 10.68 13.68 11.92 12.93
E[t/Nt ]

32
1000

32
1000

32
1000

32
1000

245
1000

245
1000

247
1000

247
1000

777
1000

778
1000

783
1000

784
1000

queue size at the side that was changed and continue this process. Unfortunately, this procedure
is computationally intensive to study the coarse-grain behavior of the price process, especially for
a Monte Carlo analysis, in which we require a large number of simulations. Instead, we propose a
more efficient method, in which, without simulating the events leading to it, we directly simulate
the random vector (ς(x, y), Yς(x,y)(x, y)), which represents the time of a depletion at the level
I and the amount of orders in the level at such a time. This in turn would allow us to obtain
the time of a price change and the amount of outstanding limit orders at the opposite side of
the book. To simulate (ς(x, y), Yς(x,y)(x, y)), we take advantage of the representation for their
joint probability given by Eq. (35). This representation has several advantages. In particular, its
computation requires to find the eigenvalues {ξk} and eigenfunctions { fk(x, y)} of the discrete
Laplacian, only once, regardless of t and ā.

By Lemma 2.12 and Theorem 2.13, we have

E
 st

t


t→∞
→

ν(h)

Eπ (τ1)
,

Var (st )

t
t→∞
→ γ 2(h), E


t

Nt


t→∞
→ Eπ (τ1). (45)

We proceed to analyze the performance of the above asymptotic approximations for “large”
t . Our goal is to assess how close the distribution of st is to its diffusive approximation for
some sampling time spans t commonly used in practice (say, 1, 5 min, etc.). To compute the
expectations and variances appearing in (45), we use a Monte Carlo method with 200 simulations
of the orderbook. The results are shown in Table 2. As expected, the larger the rates λ and υ are,
the smaller Eπ (τ1) gets and, as a result, the larger the expected rate of return E (st ) becomes.
We also observe that, in that case, there seems to be a significant increment in the volatility
√

Var (st ) of the asset price. An intuitive interpretation of this phenomenon is that increasing
λ and υ simultaneously is equivalent to speeding up the dynamics of the process, which will
necessarily result in higher variability.
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Table 3
Proportion of time spent by the spread at the different values during a 5 min time period.

Case 1 Tick 2 Ticks 3 Ticks 4+ Ticks

α = υ + 1
λ = 2204, υ = 2331 0.97248 0.02716 0.00035 0.00001
λ = 317, υ = 325 0.906891 0.088491 0.004135 0.000564
λ = 102, υ = 104 0.86881 0.12084 0.008868 0.001482

α = 2υ
λ = 2204, υ = 2331 0.98627 0.01365 0.00007 0.00001
λ = 317, υ = 325 0.95327 0.045697 0.000956 0.000077
λ = 102, υ = 104 0.94383 0.054443 0.001579 0.000148

Fig. 2. QQ Normal plot for the sample of st , when λ = 2204, υ = 2331, and α = 2332. The time horizon chosen is
t = 60 s (left panel) and t = 300 s (right panel).

Next, we turn our attention to the behavior of the spread. Based again on 200 simulations and
an initial spread of 4, Table 3 shows the percentage of the time that the spread spends at each
state during the time interval [0, 300 sec] for the different values of λ, υ, and α. These results
show that the larger the rates λ and υ are, the longer the spread spends in the state of one tick.
This is due to the fact that the larger these rates are, the quicker the spread change and, by the
choice of α, the quicker it will shrink to 1. More importantly, these results show that, when α/υ
is large enough, our model can closely replicate the stylized empirical behavior of the spread as
suggested, for instance, by Cont and Larrard [6] (see Table 2 therein).

Finally, Figs. 2–4 compare the empirical density of st , based on 200 simulations, to a Gaussian
distribution via QQ normal plots. We do this for t = 1 min and t = 5 min, which, for instance, are
commonly used as sampling frequencies of several statistical estimation methods. For the sake
of space, we only show the graphs corresponding to α = υ + 1 (there is no significant changes
when α = 2υ). As seen in the graphs, the distribution of st is relatively well approximated by a
Normal distribution for these two values of t .

4.2. Evaluation of some quantities of interest

To understand the impact of the assumptions made in our model and make some comparisons
to the model presented in [6], we proceed to compute numerically some of the quantities of
interest introduced in Section 3.
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Fig. 3. QQ Normal plot for the sample of st , when λ = 317, υ = 325, and α = 326. The time horizon chosen is t = 60 s
(left panel) and t = 300 s (right panel).

Fig. 4. QQ Normal plot for the sample of st , when λ = 102, υ = 104, and α = 208. The time horizon chosen is t = 60 s
(left panel) and t = 300 s (right panel).

We first consider the distribution of the time span between price changes. This distribution
was computed in Proposition 1 of [6] under the assumptions therein. The survival function was
also plotted in Figure 4 therein with λ = 12, µ + θ = 13, xa

0 = 5, and xb
0 = 4 as the input

parameters. In the left panel of Fig. 5, conditional on a spread of 1, the survival distribution of
the time between price changes, τ , is reproduced and compared with the distributions obtained
by the method introduced in Section 3.1 (see Eqs. (36)–(38)) for different values of N∗. The
right panel of Fig. 5 also depicts the densities of the time τ . As shown in the graphs, for values
of N∗ close to 5, the density is more concentrated around 0, which is natural since the queue
sizes cannot surpass the value of N∗, which tends to produce smaller τ values. Furthermore,
as expected, the survival and density functions under our model converge to those of Cont and
Larrard [6] as N∗ increases.

The distribution of the time for the next price to occur, when the spread is 2, is not considered
here, because this is very similar to the one of an exponential random variable with parameter
2α. This is because, under the recurrence condition α ≥ µ + θ , it is far more probable that a
price change occurs due to the arrival of a new set of limit orders within the spread than to the
depletion of a level I queue.
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Fig. 5. Survival and density functions of the time for the first price change to occur under the Cont and Larrard’s model
and our model with different values of N = N∗, conditioning on the spread to be 1. Parameter choices: λ = 12,
µ+ θ = 13, xa

0 = 5, and xb
0 = 4.

Fig. 6. Comparison of the probability of a price increase as a function of xa
0 for different values of N = N∗. The number

of bid orders is fixed at 30 (left panel) and 50 (right panel).

Next, we compare the probability of a price increase for different values of xa
0 , xb

0 , and N∗,
when the spread is set to be 1. Cont and Larrard [6] provide a formula for such a quantity in
Proposition 3 therein, but, unfortunately, this formula is difficult to implement in the asymmetric
order flow case. By contrast, the method proposed in Section 3.2 is more efficient, since all of the
quantities therein rely on the spectral decomposition of the discrete Laplacian (34), which, once
N∗ is fixed, has to be computed only once. Fig. 6 shows the probability of a price increase as a
function of xa

0 , for fixed xb
0 = 30 (left panel) and xb

0 = 50 (right panel). By symmetry, we would
have the same graph if we plot the probability against xb

0 for fixed values of xa
0 . Note that, in the

first case, when xb
0 = 30, the probability of a price increase does not vary significantly with N∗,

for most of the values of xa
0 . It is only when xa

0 becomes close to the value of N∗ that we notice
some variations. On the other hand, when xb

0 = 50, which is closer to the considered values for
N∗, the probability significantly varies with N∗, for a large range of values of xa

0 . The dashed
lines therein show that, regardless of N∗, the probability of a price increase is always 0.5, as it
should be, when xa

0 = xb
0 .
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5. Conclusions

In this paper, we propose a new Markovian model for the dynamics of the level I of a limit
order book. Our model incorporates a varying spread and avoids resetting completely the level I
of the book at each price change, both of which are real features not accounted for in earlier works
that obtain similar results to ours. Although the general rules governing the order book in this
setting create a relatively complex dynamics, we are still capable of computing several features
of the LOB model of relevance in high-frequency trading (see [7] for this type of applications).

Our main result characterizes the coarse-grain behavior of the midprice process in terms of a
Brownian motion with drift. This was made possible by expressing the price changes in terms
of a suitable Markov chain and to take advantage of the ergodic theory for countable positive
recurrent Harris chains. To this end, two key assumptions were needed: the boundedness of the
queue sizes at every moment and a sufficiently high arrival rate of new orders in between the
spread compared to the intensity of arrivals of market order/cancellations. The latter condition
is also intuitive since it prevents the spread to grow indefinitely with positive probability. These
two conditions enable us to study the diffusive nature of the price process without losing realism.

It is known that markets exhibit relatively large price shifts in relatively short time periods
and, thus, the incorporation of these “jumps” into an order book model is appealing. A natural
approach to address this problem may be the introduction of more levels in the order book,
governed by similar rules to those imposed in the model proposed in this work.
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Appendix. Additional proofs

Proof of Lemma 2.4. Throughout, we set Yt (x, y) := (Y 1
t (x, y), Y 2

t (x, y)) := (Qb,0
t (x), Qa,0

(y)), La
:= La

1(2), Lb
:= Lb

1(2), and L := La
∧ Lb. Also, let ŷ = (y1, j ± 1, y2, j) ∈ Ξ \ F ,

where y1 = (y1
1 , y2

1) ∈ Ω2
N∗ , y2 = (y1

2 , y2
2) ∈ Ω2

N∗ and j > 1. In that case,

(Pϕ)(ŷ) =


z2=(z1

2,z
2
2)∈Ω2

N∗

P((y1, j ± 1, y2, j), (y2, j, z2, j − 1)) ϕ((y2, j, z2, j − 1))

+


z2=(z1

2,z
2
2)∈Ω2

N∗

P((y1, j ± 1, y2, j), (y2, j, z2, j + 1)) ϕ((y2, j, z2, j + 1)),

which, using that ϕ((y2, j, z2, k)) = ϕ(k), can then be decomposed and simplified as follows:

(Pϕ)(ŷ) =

N∗
z1

2=1

N∗
z2

2=1

P(L < ς(y2), L = La, Y 1
L(y2) = z1

2) f a(z2
2)ϕ( j − 1)

+

N∗
z1

2=1

N∗
z2

2=1

P(L < ς(y2), L = Lb, Y 2
L(y2) = z2

2) f b(z1
2)ϕ( j − 1)

+

N∗
z1

2=1

N∗
z2

2=1

P(ς(y2) < L , Yς(y2)(y2) = (z1
2, 0)) f a(z2

2)ϕ( j + 1)
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+

N∗
z1

2=1

N∗
z2

2=1

P(ς(y2) < L , Yς(y2)(y2) = (0, z2
2)) f b(z1

2)ϕ( j + 1)

= ϕ( j − 1)P(L < ς(y2))+ ϕ( j + 1)P(ς(y2) < L).

Since P(ς(y) > t) ≤ P(ς(z) > t) for y = (y1, y2), z = (z1, z2) ∈ Ω2
N∗ with z1

≥ y1 and
z2

≥ y2, for any y2 ∈ Ω2
N∗ ,

P(ς((N∗, N∗)) > t) ≥ P(ς(y2) > t) ≥ P(ς((1, 1)) > t).

Thus,
ẑ∈Ξ

P(ŷ, ẑ)ϕ(ẑ) = ϕ( j − 1)P(N < ς(y2))+ ϕ( j + 1)P(ς(y2) < N )

≤ ϕ( j − 1)(1 − pN∗)+ ϕ( j + 1)p1.

From the previous expression, a sufficient condition for ϕ to be super-harmonic, is to satisfy the
linear difference equation p1ϕ( j + 1)+ (1 − pN∗)ϕ( j − 1) = ϕ( j), whose particular solution,
satisfying the desired boundary conditions, is given by (12).

Proof of Lemma 2.5. Throughout, we set 1 = (1, 1) and N∗
= (N∗, N∗). First, we will prove

that the condition α > µ + θ implies an upper bound for p1. The independence of ς(1) and
L ∼ exp(2α) implies that P(L > ς(1)) =


∞

0 fς(1)(t)e−2αt dt , where fς(1)(t) is the probability
density functions of ς(1). Using integration by parts,

P(L > ς(1))

=


∞

0

d

dt
(−P(ς(1) ≥ t)) e−2αt dt = 1 −


∞

0
2αe−2αtP(ς(1) ≥ t)dt. (46)

Let Et be the event that there is neither a cancellation nor an arrival of market orders before time
t at either side of the book. Since P(ς(1) ≥ t) > P(Et ) = e−2(µ+θ)t , by (46) and the assumption
that α > µ+ θ ,

P(L > ς(1)) = 1 −


∞

0
2αe−2αtP(ς(1) ≥ t)dt < 1 −

α

α + µ+ θ
≤

1
2
.

Thus, regardless of the sign of p1(1 − p∗

N), since pN∗ < p1 <
1
2 , we have that lim j→∞ ϕ( j)

= ∞. �

Proof of Lemma 2.6. We apply Theorem 2.2, for which we need to prove that π(| f |) < ∞ and
π(|gt |) < ∞. The latter assertions hold true if we can show that, for all x̂ = (x0, c0, x1, c1) ∈ Ξ ,

E(τ1 | x̂) ≤ C < ∞, (47)

for a constant C , since

π(| f |) :=


x̂∈Ξ

π(x̂)E(τ1 | x̂) ≤ C

x̂∈Ξ

π(x̂) < ∞,

π(|gt |) :=


x̂∈Ξ

π(x̂)P(τ1 > t | x̂) ≤


x̂∈Ξ

π(x̂) < ∞.

To show (47), we first need some notation. Let ς(x) be defined as in Lemma 2.4. Note that

E (τ1| (x̃0, ζ0) = (x0, c0))
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≤ E

τ1| (x̃0, ζ0) = ((N∗, N∗), 1)


= E


ς((N∗, N∗))


< ∞, (48)

where the last inequality holds, since ς((N∗, N∗)) ≤ min(ϖ1,ϖ2), where ϖi , i = 1, 2, is
the hitting time at 0 of a 1-dimensional birth and death process with birth rate λ and death rate
µ+ θ starting at N∗ (for which is known the expectation is finite) and ϖ1 is independent of ϖ2.
Next, let R(x0, c0) = {x1 ∈ Ω2

N∗ : P((x̃1, ζ1) = (x1, c0 ± 1) | (x̃0, ζ0) = (x0, c0)) > 0} and
let

r±
x1
((x0, c0)) := P((x̃1, ζ1) = (x1, c0 ± 1) | (x̃0, ζ0) = (x0, c0)), c0 > 1,

rx1((x0, 1)) := P((x̃1, ζ1) = (x1, 2) | (x̃0, ζ0) = (x0, 1)),

rmin(x0) := min{r±
x1
((x0, 2)) : x1 ∈ R(x0, 2)} ∧ min{rx1((x0, 1)) : x1 ∈ R(x0, 1)}.

Since, for any c0, c1 > 1, r±
x1
((x0, c0)) = r±

x1
((x0, c1)), it follows that 0 < rmin(x0) ≤

r±
x1
((x0, c0)) for all c0 ∈ {2, 3, . . .} and x1 ∈ R(x0, c0). Therefore,

rmin(x0)


x1∈R(x0,c0)

E(τ1 | x0, c0, x1, c0 ± 1)

≤ E(τ1|(x̃0, ζ0) = (x0, c0)) < E(ς((N∗, N∗))) < ∞.

This implies (47), which in turn implies the result as explained above.

Proof of Theorem 2.11. Since the state space, Λ, is countable, every finite subset of the state
space is an atom (e.g., see [14, Chapter 5, pg 105]) and, hence, we are able to construct explicitly
the solution of the Poisson equation (22). Indeed, by Equation (17.38) in [14] and the discus-
sion therein, for C1 := {z̄ = (x, c, u) ∈ Λ : x ∈ Ω2

N∗ , c = 1, u ∈ {−1/2, 1/2}}, we have
that

ĥ(z̄) = Ez̄

σC1
k=1

h̄(Vk)


, (49)

where σC1 = min{n ≥ 0 | Vn ∈ C1}. Since for any z̄ ∈ Λ, |h(z̄)| ≤ 1/2, |h(z̄)| ≤ 1 and, thus,
|ĥ(z̄)| ≤ Ez̄(σC1). Therefore, to conclude that the invariance principle (26) holds true, it suffices
to show that

ν

E2

· (σC1)


:=


z̄∈Λ

ν(z̄)E2
z̄ (σC1) < ∞. (50)

Let C j = {z̄ = (x, c, u) ∈ Λ|x ∈ Ω2
N∗ , c = j, u ∈ {−1/2, 1/2}}. Each C j is finite and {C j } j≥1

forms a partition of Λ. Clearly, for every n, if Vn ∈ C j , with j ≥ 2, then Vn+1 ∈ {C j−1,C j+1}.
Moreover, with the notation of Lemma 2.4 and, as proved in the proof of Lemma 2.5, for any
z̄ = (x, c, u) ∈ C j

P(Vn+1 ∈ C j+1|Vn = z̄) = P (ς(x) < L) ≤ P(ς(1) < L) = p1.
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Consider now a birth and death process Ṽn ∈ N with birth probability p1 and death probability
1 − p1, and note that

P[Vn+1 ∈ C j−1 | Vn = z̄] ≥ 1 − p1 = P[Ṽn+1 = j − 1 | Ṽn = j].

Denote by σ Ṽ
1 the first hitting time of Ṽ to the point 1. That is, σ Ṽ

1 = min{n > 0 | Ṽn = 1}.
Then, since V dies more frequently than Ṽ , for any z̄ ∈ C j ,

Ez̄[σC1 ] ≤ E j [σ
Ṽ
1 ] =

j − 1
1 − 2pN∗

, (51)

where, in the last equality we use that p1 < 1/2 (see [18, Section 3.1]).
The next step is to bound the terms ν(C j ) for j ≥ 2. To shorten notation, define Θ := ΩN∗ ×

{−1/2, 1/2}. Recall that if the spread is larger than one, the spread will widen or shrink right
after every price change, whereas if the spread is 1, it will surely widen at the next step. Thus, for
any ȳ ∈ C1 and any z̄ ∈ C j with j ≥ 2, Pext

[ȳ,C2] = 1 and Pext
[z̄,C j+1]+ Pext

[z̄,C j−1] = 1.
By the definition of a stationary measure,

ν(C1) =


Λ

Pext
[z̄,C1]ν(dz̄) =


z̄∈C2

Pext
[z̄,C1]ν(z̄) =


z̄∈C2

(1 − Pext
[z̄,C3])ν(z̄),

which implies that
z̄∈C2

Pext
[z̄,C3]ν(z̄) = ν(C2)− ν(C1). (52)

Analogously,

ν(C2) =


Λ

Pext
[z̄,C2]ν(dz̄) =


z̄∈C1

Pext
[z̄,C2]ν(z̄)+


z̄∈C3

Pext
[z̄,C2]ν(z̄)

= ν(C1)+


z̄∈C3

(1 − Pext
[z̄,C4])ν(z̄),

which implies that
z̄∈C3

Pext
[z̄,C4]ν(z̄) = ν(C1)− ν(C2)+ ν(C3). (53)

Next, note that, for j > 2,

ν(C j−1) =


Λ

Pext
[z̄,C j−1]ν(dz̄)

=


z̄∈C j−2

Pext
[z̄,C j−1]ν(z̄)+


z̄∈C j

(1 − Pext
[z̄,C j+1])ν(z̄)

= ν(C j )+


z̄∈C j−2

Pext
[z̄,C j−1]ν(z̄)−


z̄∈C j

Pext
[z̄,C j+1]ν(z̄). (54)

Therefore,
z̄∈C j

Pext
[z̄,C j+1]ν(z̄) = ν(C j )− ν(C j−1)+


z̄∈C j−2

Pext
[z̄,C j−1]ν(z̄). (55)
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Applying the previous equation recursively, for all even j ≥ 2,
z̄∈C j

Pext
[z̄,C j+1]ν(z̄)

= ν(C j )− ν(C j−1)+ ν(C j−2)− ν(C j−3)+ · · · + ν(C4)− ν(C3)

+


z̄∈C2

Pext
[z̄,C3]ν(z̄),

and, thus, by (52),
z̄∈C j

Pext
[z̄,C j+1]ν(z̄) = ν(C j )− ν(C j−1)+ ν(C j−2)− ν(C j−3)+ · · ·

+ ν(C4)− ν(C3)+ ν(C2)− ν(C1). (56)

However, if j ≥ is odd, by (53),
z̄∈C j

Pext
[z̄,C j+1]ν(z̄) = ν(C j )− ν(C j−1)+ ν(C j−2)− ν(C j−3)+ · · ·

+ ν(C5)− ν(C4)+


z̄∈C3

Pext
[z̄,C4]ν(z̄)

= ν(C j )− ν(C j−1)+ ν(C j−2)− ν(C j−3)+ · · ·

+ ν(C5)− ν(C4)+ ν(C1)− ν(C2)+ ν(C3). (57)

Eqs. (56)–(57) imply that

ν(C j+1) =


z̄∈C j

Pext
[z̄,C j+1]ν(z̄)+


z̄∈C j+1

Pext
[z̄,C j+2]ν(z̄).

However, by the definition of a stationary measure,

ν(C j+1) =


z̄∈C j

Pext
[z̄,C j+1]ν(z̄)+


z̄∈C j+2

Pext
[z̄,C j+1]ν(z̄).

The previous two equations yield the following relation,3
z̄∈C j+1

Pext
[z̄,C j+2]ν(z̄) =


z̄∈C j+2

Pext
[z̄,C j+1]ν(z̄). (58)

We are now ready to bound the term ν(C j ). To that end, notice that for any z̄ ∈ C j , Pext
[z̄,C j−1]

≥ (1 − p1) and, thus,

ν(C j ) =


z̄∈C j−1

Pext
[z̄,C j ]ν(z̄)+


z̄∈C j+1

Pext
[z̄,C j ]ν(z̄)

=


z̄∈C j

Pext
[z̄,C j−1]ν(z̄)+


z̄∈C j+1

Pext
[z̄,C j ]ν(z̄)

≥ (1 − p1)ν(C j )+ (1 − p1)ν(C j+1).

3 Eq. (58) gives some insight into the structure of the stationary measure ν and can be regarded as a “batch” version
of the so-called Detailed Balance Conditions for Markov Chains, which are important for analyzing reversible processes
(cf. [11, Chapter 1.2]).
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Therefore, ν(C j+1) ≤ ν(C j )p1/(1 − p1), which, by induction, implies that

ν(C j+1) ≤


p1

1 − p1

 j−1

ν(C2). (59)

Finally, by (51) and (59) and the fact that p∗
= p1/(1− p1) < 1, for some bounded constant C∗,

ν(E2
· (σC1)) =


z̄∈C1

ν(z̄)E2
z̄ (σC1)+

∞
j=2


z̄∈C j

ν(z̄)E2
z̄ (σC1)

= C∗
+

∞
j=2

ν(C j )


j − 1

1 − 2pN∗

2

≤ C∗
+ ν(C1)

∞
j=2


p∗
 j−1


j − 1

1 − 2pN∗

2

< ∞. (60)

It only remains to show that the variance in the FCLT can be written as (27). But, by Theorem
17.5.3 in [14], it is enough to show that the Markov chain {Vn}n≥1 is ergodic and there exists a
function F : Λ → [0,∞] such that ν(F2) < ∞ and

1F(z̄) ≤ −1 + b1{z̄∈B}, (61)

for a constant b < ∞ and a finite set B, where ∆ is the operator 1F(z̄) := Ez̄ [F(V1)− F(V0)]
(cf. Section 14.2.1 in [14]). However, it is known (cf. Section 13.1.2 [14]) that aperiodic positive
Harris chains over a countable state space are ergodic and by Proposition 14.1.2 and Theorem
14.2.3(ii) therein, the function F(z̄) := Ez̄[σB] satisfies (61), where σB is the first hitting time of
the set B in (61). Since it was proven above that ν(E2

· [σC1 ]) < ∞, we take B = C1 to conclude
the proof. �

Proof of Lemma 3.1. Let us start by noting that the generator of the two-dimensional random
walk Y defined in (30) is given by the finite difference operator L defined in (32). More
concretely, for a function φ : Ω̄2

N∗ → R, L φ(x, y) is defined analogously to (32) but
replacing u(t, x, y) with φ(x, y). For simplicity, we denote ς := ς(x, y) and remark that ς
is an absolutely continuous random variable. Let ū(t, x, y) be an arbitrary bounded function
such that t → ū(t, x, y) is C1 for all (x, y) and (t, x, y) → ∂t ū(t, x, y) is bounded. Fix T > 0
and let f (t, x, y) = ū(T − t, x, y). Under the stated conditions, ū belongs to the domain of the
generator L and, thus, the process

f (t, X t )−

 t

0


∂

∂r
+ L


f (r, Yr )dr, t ∈ [0, T ]

is a local martingale. Therefore,

Mt := ū(T − t, Yt )−

 t

0


−
∂

∂t
+ L


ū(T − r, Yr )dr, t ∈ [0, T ],

is a martingale. Let σ := T ∧ ς . By the Optional Sampling Theorem,

ū(T, x, y) = E[ū(T − σ, Yσ )] − E
 σ

0


−
∂

∂t
+ L


ū(T − r, Yr )dr


. (62)
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Now, suppose that ū(t, x, y) solves the following initial value problem,


−
∂

∂t
+ L


ū(T − r, x, y) = 0 for 0 ≤ r ≤ T, (x, y) ∈ {1, 2, . . . , N∗

}
2.

ū(T − r, x, y) = 1{(x,y)=ā} for 0 ≤ r ≤ T, (x, y) ∈ A .

ū(0, x, y) = 1{(x,y)=ā} for (x, y) ∈ {0, 1, 2, . . . , N∗
}
2.

(63)

In that case, by Eq. (62),

ū(T, x, y) = E[ū(T − σ, Yσ )]

= E[ū(T − σ, Yσ )1{σ<T } + ū(T − σ, Yσ )1{σ=T }]

= E[1{Yσ=ā}1{σ<T } + ū(0, Yσ )1{σ=T }]

= P[Yς = ā, ς ≤ T ],

which implies that ū(t, x, y) = uā(t, x, y). �

Proof of Proposition 3.2. Let

w(t, x, y) =


λ

υ

 ā1+ā2
2

et (2(λ+υ)−4
√
λυ)1{(x,y)=ā}.

Fix ṽ(t, x, y) = v(t, x, y) − w(t, x, y) and note that v(t, x, y) satisfies the system (66) if and
only if ṽ is a solution to the initial value problem:

−


∂

∂t
−

√
λυ∆


ṽ(t, x, y) =


∂

∂t
−

√
λυ∆


w(t, x, y) for t ≥ 0, (x, y) ∈ ΩN∗

ṽ(t, x, y) = 0 for t ≥ 0, (x, y) ∈ A
ṽ(0, x, y) = 0 for (x, y) ∈ Ω̄N∗ .

(64)

Let {ψk(t)}N∗2

k=1 and {ς ā
k }

N∗2

k=1 be such that ṽ(t, x, y) =
N∗2

k ψk(t) fk(x, y) and 1(x,y)=a+1
 =N∗2

k=1 ς
ā
k fk(x, y). Using the first representation, the left-hand side of the first equation in (64)

becomes

−


∂

∂t
−

√
λυ∆


ṽ(t, x, y) = −

N∗2
k=1

ψ ′

k(t) fk(x, y)− ψk(t)
√
λυ1 fk(x, y)

=

N∗2
k=1


−ψ ′

k(t)+ ψk(t)
√
λυξk


fk(x, y).

Similarly, the right-hand side of the first equation in (64) is given by
∂w

∂t
−

√
λυ∆


w = −


λ

υ

 ā1+ā2
2 √

λυet (2(λ+υ)−4
√
λυ)1(x,y)=a+1



= −et (2(λ+υ)−4
√
λυ)


λ

υ

 ā1+ā2
2 √

λυ

N∗2
k=1

ς ā
k fk(x, y).

Combining the previous two expressions and recalling that { fk(x, y)}k is an orthonormal basis,
it follows that the function ṽ(t, x, y) =


k ψk(t) fk(x, y) will solve the system (64) if and only
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if, for every k, the function ψk(t) satisfies the following equation:

− ψ ′

k(t)+ ψk(t)
√
λυξk = −et (2(λ+υ)−4

√
λυ)


λ

υ

 ā1+ā2
2 √

λυς ā
k , (65)

with the initial condition ψk(0) = 0. It is easy to see that the previous differential equation is
well posed and has solution

ψk(t) =


λ

υ

 ā1+ā2
2

√
λυς ā

k

2(λ+ υ)−
√
λυ(4 + ξk)


et

√
λυξk − et (2(λ+υ)−4

√
λυ)

.

Therefore,

ṽ(t, x, y)

=


λ

υ

 ā1+ā2
2 

k

√
λυς ā

k

2(λ+ υ)−
√
λυ(4 + ξk)


et

√
λυξk − et (2(λ+υ)−4

√
λυ)


fk(x, y),

satisfies the initial value problem (64), which in turn, implies that

u(t, x, y)

=


λ

υ

 ā1+ā2−x−y
2

 N∗2
k=1

√
λυς ā

k

2(λ+ υ)−
√
λυ(4 + ξk)


1 − e−t (2(λ+υ)−(4+ξk )

√
λυ)


× fk(x, y)+ 1{(x,y)=ā}


,

is a solution of (31). Then, the representation (35) immediately follows by noting that ς ā
k =

fk(a + 1) and rewriting the previous expression in terms of χ = λ/υ.

Lemma A.1. A function u : [0, T ] × Ω̄2
N∗ → R is a solution of the system of differential

equations (31) if and only if the function v(t, x, y) defined by

v(t, x, y) =


λ

υ

 x+y
2

et (2(λ+υ)−4
√
λυ)u(t, x, y),

solves the system of difference equations


−
∂

∂t
+

√
λυ∆


v(t, x, y) = 0, for t ≥ 0, (x, y) ∈ Ω2

N∗ ,

v(t, x, y) =


λ

υ

 ā1+ā2
2

et (2(λ+υ)−4
√
λυ)1{(x,y)=ā}, for t ≥ 0, (x, y) ∈ A ,

v(0, x, y) =


λ

υ

 ā1+ā2
2

1{(x,y)=ā}, for (x, y) ∈ Ω̄2
N∗ ,

(66)

where ā = (ā1, ā2) ∈ A and, for each fixed t, 1v(t, x, y) is defined as in (34) with respect to x
and y.

Proof. The proof is standard and is omitted. �
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